Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
Nanoscale. 2019 Sep 21;11(35):16270-16276. doi: 10.1039/c9nr04460d. Epub 2019 Aug 28.
DNA origami structures have developed into versatile tools in molecular sciences and nanotechnology. Currently, however, many potential applications are hindered by their poor stability, especially under denaturing conditions. Here we present and evaluate two simple approaches to enhance DNA origami stability. In the first approach, we elevated the melting temperature of nine critical staple strands by merging the oligonucleotides with adjacent sequences. In the second approach, we increased the global stability by enzymatically ligating all accessible staple strand ends directly. By monitoring the gradual urea-induced denaturation of a prototype triangular DNA origami modified by these approaches using atomic force microscopy, we show that rational redesign of a few, critical staple strands leads to a considerable increase in overall stability at high denaturant concentration and elevated temperatures. In addition, enzymatic ligation yields DNA nanostructures with superior stability at up to 37 °C and in the presence of 6 M urea without impairing their shape. This bio-orthogonal approach is readily adaptable to other DNA origami structures without the need for synthetic nucleotide modifications when structural integrity under harsh conditions is required.
DNA 折纸结构已发展成为分子科学和纳米技术中用途广泛的工具。然而,目前许多潜在的应用受到其较差稳定性的限制,尤其是在变性条件下。在这里,我们提出并评估了两种增强 DNA 折纸稳定性的简单方法。在第一种方法中,我们通过将寡核苷酸与相邻序列融合来提高九条关键订书链的熔点。在第二种方法中,我们通过直接酶连接所有可及的订书链末端来增加整体稳定性。通过原子力显微镜监测用这些方法修饰的原型三角形 DNA 折纸的逐渐尿素诱导变性,我们表明,对少数关键订书链进行合理的重新设计,可在高变性剂浓度和高温下显著提高整体稳定性。此外,酶连接产生的 DNA 纳米结构在高达 37°C 和 6 M 脲存在下具有优异的稳定性,而不会损害其形状。当需要在恶劣条件下保持结构完整性时,这种生物正交方法可轻松适应其他 DNA 折纸结构,而无需进行合成核苷酸修饰。