Ng Li-Ren, Chen Guan-Fu, Lin Shi-Hsin
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
Phys Chem Chem Phys. 2021 Oct 27;23(41):23945-23952. doi: 10.1039/d1cp02976b.
We calculated the piezoelectric properties of asymmetrically defected MoS using density functional theory. By creating uneven numbers of defects on either side of two-dimensional MoS, the out-of-plane centrosymmetry of the charge distribution is clearly broken, and the out-of-plane piezoelectric response is induced. The largest out-of-plane piezoelectric response is associated with the highest defect ratio for MoS to be semiconducting. We calculated the critical defect density of the metal-insulator transition of the asymmetrically defected MoS to be 9.90 × 10 cm and chemical formula MoS. The of the multilayer of optimally defected MoS is found to be greater than those of AlN and ZnO, and in the same order of magnitude as lead zirconate titanate. All two-dimensional transition metal dichalcogenides can in principle be fabricated as piezoelectric with this approach. The required defect engineering is readily available with various types of ion irradiation or plasma treatment. By controlling the dose of the ion, the defect ratio and hence the piezoelectricity can be tuned. Such asymmetrically defected transition metal dichalcogenides can easily be integrated into two-dimensional transition metal dichalcogenide based devices, which is hard for conventional piezoelectric thin films to rival.
我们使用密度泛函理论计算了不对称缺陷的二硫化钼(MoS)的压电特性。通过在二维MoS的两侧制造数量不均的缺陷,电荷分布的面外中心对称性被明显打破,从而诱导出面外压电响应。最大的面外压电响应与使MoS成为半导体的最高缺陷率相关。我们计算出不对称缺陷的MoS的金属-绝缘体转变的临界缺陷密度为9.90×10 cm以及化学式MoS。发现最佳缺陷的多层MoS的压电常数大于氮化铝(AlN)和氧化锌(ZnO),并且与锆钛酸铅处于同一数量级。原则上,所有二维过渡金属二硫属化物都可以用这种方法制成压电材料。通过各种类型的离子辐照或等离子体处理可以很容易地实现所需的缺陷工程。通过控制离子剂量,可以调节缺陷率,进而调节压电性。这种不对称缺陷的过渡金属二硫属化物可以很容易地集成到基于二维过渡金属二硫属化物的器件中,这是传统压电薄膜难以比拟的。