Suppr超能文献

用机器学习为手术主动脉瓣置换术的现有社会风险模型提供补充,以提高预测效果。

Supplementing Existing Societal Risk Models for Surgical Aortic Valve Replacement With Machine Learning for Improved Prediction.

机构信息

Division of Cardiac Surgery University of Pittsburgh Medical Center Pittsburgh PA.

Division of Cardiothoracic Surgery Medical University of South Carolina.

出版信息

J Am Heart Assoc. 2021 Nov 16;10(22):e019697. doi: 10.1161/JAHA.120.019697. Epub 2021 Oct 18.

Abstract

Background This study evaluated the role of supplementing Society of Thoracic Surgeons (STS) risk models for surgical aortic valve replacement with machine learning (ML). Methods and Results Adults undergoing isolated surgical aortic valve replacement in the STS National Database between 2007 and 2017 were included. ML models for operative mortality and major morbidity were previously developed using extreme gradient boosting. Concordance and discordance in predicted risk between ML and STS models were defined using equal-size tertile-based thresholds of risk. Calibration metrics and discriminatory capability were compared between concordant and discordant patients. A total of 243 142 patients were included. Nearly all calibration metrics were improved in cases of concordance. Similarly, concordance indices improved substantially in cases of concordance for all models with the exception of deep sternal wound infection. The greatest improvements in concordant versus discordant cases were in renal failure: ML model (concordance index, 0.660 [95% CI, 0.632-0.687] discordant versus 0.808 [95% CI, 0.794-0.822] concordant) and STS model (concordance index, 0.573 [95% CI, 0.549-0.576] discordant versus 0.797 [95% CI, 0.782-0.811] concordant) (each <0.001). Excluding deep sternal wound infection, the concordance indices ranged from 0.549 to 0.660 for discordant cases and 0.674 to 0.808 for concordant cases. Conclusions Supplementing ML models with existing STS models for surgical aortic valve replacement may have an important role in risk prediction and should be explored further. In particular, for the roughly 25% to 50% of patients demonstrating discordance in estimated risk between ML and STS, there appears to be a substantial decline in predictive performance suggesting vulnerability of the existing models in these patient subsets.

摘要

背景 本研究评估了机器学习(ML)在补充胸外科医师学会(STS)主动脉瓣置换手术风险模型中的作用。

方法和结果 纳入 2007 年至 2017 年 STS 国家数据库中接受单纯外科主动脉瓣置换术的成年人。使用极端梯度增强法先前开发了用于手术死亡率和主要发病率的 ML 模型。使用基于风险等分 tertile 的相等大小阈值来定义 ML 和 STS 模型之间预测风险的一致性和不一致性。比较了一致性和不一致性患者之间的校准指标和区分能力。

共纳入 243142 例患者。在一致性情况下,几乎所有的校准指标都得到了改善。同样,除了深部胸骨伤口感染外,所有模型的一致性指数都有了显著提高。在一致性病例中,与不一致病例相比,一致性指数显著提高:ML 模型(一致性指数,0.660 [95%置信区间,0.632-0.687] 不一致与 0.808 [95%置信区间,0.794-0.822] 一致)和 STS 模型(一致性指数,0.573 [95%置信区间,0.549-0.576] 不一致与 0.797 [95%置信区间,0.782-0.811] 一致)(均<0.001)。不包括深部胸骨伤口感染,不一致病例的一致性指数范围为 0.549 至 0.660,一致病例的一致性指数范围为 0.674 至 0.808。

结论 用现有的 STS 模型补充主动脉瓣置换手术的 ML 模型可能在风险预测中具有重要作用,应进一步探讨。特别是对于大约 25%至 50%的患者,在 ML 和 STS 之间估计风险存在不一致的情况,现有的模型在这些患者亚组中的预测性能似乎有显著下降,这表明这些模型存在脆弱性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca73/8751954/6bd45541b781/JAH3-10-e019697-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验