Suppr超能文献

基于模拟的多标准决策:一种交互式方法及传染病流行案例研究

Simulation-based multi-criteria decision making: an interactive method with a case study on infectious disease epidemics.

作者信息

Dunke Fabian, Nickel Stefan

机构信息

Institute of Operations Research, Discrete Optimization and Logistics, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany.

出版信息

Ann Oper Res. 2021 Oct 12:1-30. doi: 10.1007/s10479-021-04321-8.

Abstract

Whenever a system needs to be operated by a central decision making authority in the presence of two or more conflicting goals, methods from multi-criteria decision making can help to resolve the trade-offs between these goals. In this work, we devise an interactive simulation-based methodology for planning and deciding in complex dynamic systems subject to multiple objectives and parameter uncertainty. The outline intermittently employs simulation models and global sensitivity analysis methods in order to facilitate the acquisition of system-related knowledge throughout the iterations. Moreover, the decision maker participates in the decision making process by interactively adjusting control variables and system parameters according to a guiding analysis question posed for each iteration. As a result, the overall decision making process is backed up by sensitivity analysis results providing increased confidence in terms of reliability of considered decision alternatives. Using the efficiency concept of Pareto optimality and the sensitivity analysis method of Sobol' sensitivity indices, the methodology is then instantiated in a case study on planning and deciding in an infectious disease epidemic situation similar to the 2020 coronavirus pandemic. Results show that the presented simulation-based methodology is capable of successfully addressing issues such as system dynamics, parameter uncertainty, and multi-criteria decision making. Hence, it represents a viable tool for supporting decision makers in situations characterized by time dynamics, uncertainty, and multiple objectives.

摘要

每当一个系统需要在存在两个或更多相互冲突的目标的情况下由中央决策机构进行操作时,多准则决策方法可以帮助解决这些目标之间的权衡问题。在这项工作中,我们设计了一种基于交互式模拟的方法,用于在受多目标和参数不确定性影响的复杂动态系统中进行规划和决策。该概述间歇性地采用模拟模型和全局敏感性分析方法,以便在整个迭代过程中促进与系统相关知识的获取。此外,决策者通过根据为每次迭代提出的指导性分析问题交互式地调整控制变量和系统参数来参与决策过程。结果,整体决策过程得到敏感性分析结果的支持,从而在考虑的决策备选方案的可靠性方面提供了更高的信心。利用帕累托最优的效率概念和索博尔敏感性指数的敏感性分析方法,该方法随后在一个类似于2020年冠状病毒大流行的传染病疫情的规划和决策案例研究中得到实例化。结果表明,所提出的基于模拟的方法能够成功解决系统动力学、参数不确定性和多准则决策等问题。因此,它是在以时间动态、不确定性和多目标为特征的情况下支持决策者的一种可行工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c65/8506089/306b66eb024b/10479_2021_4321_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验