Jiřík Miroslav, Hácha Filip, Gruber Ivan, Pálek Richard, Mírka Hynek, Zelezny Milos, Liška Václav
Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia.
New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia.
Front Physiol. 2021 Oct 1;12:734217. doi: 10.3389/fphys.2021.734217. eCollection 2021.
Liver volumetry is an important tool in clinical practice. The calculation of liver volume is primarily based on Computed Tomography. Unfortunately, automatic segmentation algorithms based on handcrafted features tend to leak segmented objects into surrounding tissues like the heart or the spleen. Currently, convolutional neural networks are widely used in various applications of computer vision including image segmentation, while providing very promising results. In our work, we utilize robustly segmentable structures like the spine, body surface, and sagittal plane. They are used as key points for position estimation inside the body. The signed distance fields derived from these structures are calculated and used as an additional channel on the input of our convolutional neural network, to be more specific U-Net, which is widely used in medical image segmentation tasks. Our work shows that this additional position information improves the results of the segmentation. We test our approach in two experiments on two public datasets of Computed Tomography images. To evaluate the results, we use the Accuracy, the Hausdorff distance, and the Dice coefficient. Code is publicly available at: https://gitlab.com/hachaf/liver-segmentation.git.
肝脏容积测量是临床实践中的一项重要工具。肝脏体积的计算主要基于计算机断层扫描。不幸的是,基于手工特征的自动分割算法往往会将分割对象泄漏到周围组织,如心脏或脾脏中。目前,卷积神经网络在包括图像分割在内的各种计算机视觉应用中被广泛使用,并取得了非常有前景的结果。在我们的工作中,我们利用可稳健分割的结构,如脊柱、身体表面和矢状面。它们被用作体内位置估计的关键点。从这些结构导出的有符号距离场被计算出来,并用作我们卷积神经网络(更具体地说是广泛应用于医学图像分割任务的U-Net)输入的一个附加通道。我们的工作表明,这种额外的位置信息改善了分割结果。我们在两个计算机断层扫描图像公共数据集上进行了两个实验来测试我们的方法。为了评估结果,我们使用了准确率、豪斯多夫距离和骰子系数。代码可在以下网址公开获取:https://gitlab.com/hachaf/liver-segmentation.git。