Suppr超能文献

为什么在卷积神经网络进行的肝脏分割中使用位置特征。

Why Use Position Features in Liver Segmentation Performed by Convolutional Neural Network.

作者信息

Jiřík Miroslav, Hácha Filip, Gruber Ivan, Pálek Richard, Mírka Hynek, Zelezny Milos, Liška Václav

机构信息

Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia.

New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia.

出版信息

Front Physiol. 2021 Oct 1;12:734217. doi: 10.3389/fphys.2021.734217. eCollection 2021.

Abstract

Liver volumetry is an important tool in clinical practice. The calculation of liver volume is primarily based on Computed Tomography. Unfortunately, automatic segmentation algorithms based on handcrafted features tend to leak segmented objects into surrounding tissues like the heart or the spleen. Currently, convolutional neural networks are widely used in various applications of computer vision including image segmentation, while providing very promising results. In our work, we utilize robustly segmentable structures like the spine, body surface, and sagittal plane. They are used as key points for position estimation inside the body. The signed distance fields derived from these structures are calculated and used as an additional channel on the input of our convolutional neural network, to be more specific U-Net, which is widely used in medical image segmentation tasks. Our work shows that this additional position information improves the results of the segmentation. We test our approach in two experiments on two public datasets of Computed Tomography images. To evaluate the results, we use the Accuracy, the Hausdorff distance, and the Dice coefficient. Code is publicly available at: https://gitlab.com/hachaf/liver-segmentation.git.

摘要

肝脏容积测量是临床实践中的一项重要工具。肝脏体积的计算主要基于计算机断层扫描。不幸的是,基于手工特征的自动分割算法往往会将分割对象泄漏到周围组织,如心脏或脾脏中。目前,卷积神经网络在包括图像分割在内的各种计算机视觉应用中被广泛使用,并取得了非常有前景的结果。在我们的工作中,我们利用可稳健分割的结构,如脊柱、身体表面和矢状面。它们被用作体内位置估计的关键点。从这些结构导出的有符号距离场被计算出来,并用作我们卷积神经网络(更具体地说是广泛应用于医学图像分割任务的U-Net)输入的一个附加通道。我们的工作表明,这种额外的位置信息改善了分割结果。我们在两个计算机断层扫描图像公共数据集上进行了两个实验来测试我们的方法。为了评估结果,我们使用了准确率、豪斯多夫距离和骰子系数。代码可在以下网址公开获取:https://gitlab.com/hachaf/liver-segmentation.git。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726e/8518428/8d6eccbc7ccf/fphys-12-734217-g0001.jpg

相似文献

1
Why Use Position Features in Liver Segmentation Performed by Convolutional Neural Network.
Front Physiol. 2021 Oct 1;12:734217. doi: 10.3389/fphys.2021.734217. eCollection 2021.
2
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
Med Phys. 2021 Nov;48(11):7141-7153. doi: 10.1002/mp.15204. Epub 2021 Sep 13.
3
A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.
Rofo. 2021 Mar;193(3):305-314. doi: 10.1055/a-1238-2887. Epub 2020 Sep 3.
4
Liver tumor segmentation based on 3D convolutional neural network with dual scale.
J Appl Clin Med Phys. 2020 Jan;21(1):144-157. doi: 10.1002/acm2.12784. Epub 2019 Dec 2.
5
A multiple-channel and atrous convolution network for ultrasound image segmentation.
Med Phys. 2020 Dec;47(12):6270-6285. doi: 10.1002/mp.14512. Epub 2020 Oct 18.
6
Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
Med Image Anal. 2021 May;70:101994. doi: 10.1016/j.media.2021.101994. Epub 2021 Feb 7.
8
DENSE-INception U-net for medical image segmentation.
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.
9
Automatic liver segmentation by integrating fully convolutional networks into active contour models.
Med Phys. 2019 Oct;46(10):4455-4469. doi: 10.1002/mp.13735. Epub 2019 Aug 16.
10
Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.
Int J Comput Assist Radiol Surg. 2019 Aug;14(8):1275-1284. doi: 10.1007/s11548-019-01989-z. Epub 2019 Apr 30.

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
2
Computational Modeling in Liver Surgery.
Front Physiol. 2017 Nov 14;8:906. doi: 10.3389/fphys.2017.00906. eCollection 2017.
3
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
4
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
Comparison and evaluation of methods for liver segmentation from CT datasets.
IEEE Trans Med Imaging. 2009 Aug;28(8):1251-65. doi: 10.1109/TMI.2009.2013851. Epub 2009 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验