Suppr超能文献

使用回归模型和人工神经网络估计中年成年人的心率

Estimation of Heart Rate Using Regression Models and Artificial Neural Network in Middle-Aged Adults.

作者信息

Tao Kuan, Li Jiahao, Li Jiajin, Shan Wei, Yan Huiping, Lu Yifan

机构信息

School of Sports Engineering, Beijing Sport University, Beijing, China.

School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.

出版信息

Front Physiol. 2021 Sep 30;12:742754. doi: 10.3389/fphys.2021.742754. eCollection 2021.

Abstract

: Heart rate is the most commonly used indicator in clinical medicine to assess the functionality of the cardiovascular system. Most studies have focused on age-based equations to estimate the maximal heart rate, neglecting multiple factors that affect the accuracy of the prediction. : We studied 121 middle-aged adults at an average age of 57.2years with an average body mass index (BMI) of 25.9. The participants performed on a power bike with a starting wattage of 0W that was increased by 25W every 3min until the experiment terminated. Ambulatory blood pressure and electrocardiography were monitored through gas metabolic analyzers for safety concerns. Six descriptive characteristics of participants were observed, which were further analyzed using a multivariate regression model and an artificial neural network (ANN). : The input variables for the multivariate regression model and ANN were selected by correlation for the reduction of dimension. The accuracy of estimation by multivariate regression model and ANN was 9.74 and 9.42%, respectively, which outperformed the traditional age-based model (with an accuracy of 10.31%). : This study provides comprehensive approaches to estimate the maximal heart rate using multiple indicators, revealing that both the multivariate regression model and ANN incorporated with age, resting heart rate (RHR), and second-order heart rate (SOHR) are more accurate than univariate models.

摘要

心率是临床医学中评估心血管系统功能最常用的指标。大多数研究都集中在基于年龄的公式来估计最大心率,而忽略了影响预测准确性的多个因素。我们研究了121名平均年龄为57.2岁、平均体重指数(BMI)为25.9的中年成年人。参与者在功率自行车上进行测试,起始功率为0W,每3分钟增加25W,直至实验结束。出于安全考虑,通过气体代谢分析仪监测动态血压和心电图。观察了参与者的六个描述性特征,并使用多元回归模型和人工神经网络(ANN)进行进一步分析。通过相关性选择多元回归模型和ANN的输入变量以进行降维。多元回归模型和ANN的估计准确率分别为9.74%和9.42%,优于传统的基于年龄的模型(准确率为10.31%)。本研究提供了使用多个指标估计最大心率的综合方法,表明结合年龄、静息心率(RHR)和二阶心率(SOHR)的多元回归模型和ANN都比单变量模型更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98d8/8514712/854f1e947a83/fphys-12-742754-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验