Suppr超能文献

心率传感器位置与呼吸率和分钟通气量对摄氧量预测的综合影响。

Combined Impact of Heart Rate Sensor Placements with Respiratory Rate and Minute Ventilation on Oxygen Uptake Prediction.

机构信息

School of China Football Sports, Beijing Sport University, Beijing 100084, China.

Exercise Science School, Beijing Sport University, Beijing 100084, China.

出版信息

Sensors (Basel). 2024 Aug 21;24(16):5412. doi: 10.3390/s24165412.

Abstract

Oxygen uptake (V˙O2) is an essential metric for evaluating cardiopulmonary health and athletic performance, which can barely be directly measured. Heart rate (HR) is a prominent physiological indicator correlated with V˙O2 and is often used for indirect V˙O2 prediction. This study investigates the impact of HR placement on V˙O2 prediction accuracy by analyzing HR data combined with the respiratory rate (RESP) and minute ventilation (V˙E) from three anatomical locations: the chest; arm; and wrist. Twenty-eight healthy adults participated in incremental and constant workload cycling tests at various intensities. Data on V˙O2, RESP, V˙E, and HR were collected and used to develop a neural network model for V˙O2 prediction. The influence of HR position on prediction accuracy was assessed via Bland-Altman plots, and model performance was evaluated by mean absolute error (MAE), coefficient of determination (R), and mean absolute percentage error (MAPE). Our findings indicate that HR combined with RESP and V˙E (V˙O2HR+RESP+V˙E) produces the most accurate V˙O2 predictions (MAE: 165 mL/min, R: 0.87, MAPE: 15.91%). Notably, as exercise intensity increases, the accuracy of V˙O2 prediction decreases, particularly within high-intensity exercise. The substitution of HR with different anatomical sites significantly impacts V˙O2 prediction accuracy, with wrist placement showing a more profound effect compared to arm placement. In conclusion, this study underscores the importance of considering HR placement in V˙O2 prediction models, with RESP and V˙E serving as effective compensatory factors. These findings contribute to refining indirect V˙O2 estimation methods, enhancing their predictive capabilities across different exercise intensities and anatomical placements.

摘要

摄氧量(V˙O2)是评估心肺健康和运动表现的重要指标,但很难直接测量。心率(HR)是与 V˙O2相关的重要生理指标,常用于间接预测 V˙O2。本研究通过分析心率(HR)与呼吸频率(RESP)和分钟通气量(V˙E)结合来自三个解剖位置(胸部、手臂和手腕)的数据,研究了 HR 位置对 V˙O2 预测准确性的影响。28 名健康成年人在不同强度下进行递增和恒负荷自行车测试。收集 V˙O2、RESP、V˙E 和 HR 数据,并用于开发用于 V˙O2 预测的神经网络模型。通过 Bland-Altman 图评估 HR 位置对预测准确性的影响,并通过平均绝对误差(MAE)、决定系数(R)和平均绝对百分比误差(MAPE)评估模型性能。我们的研究结果表明,HR 与 RESP 和 V˙E 相结合(V˙O2HR+RESP+V˙E)可产生最准确的 V˙O2 预测(MAE:165mL/min,R:0.87,MAPE:15.91%)。值得注意的是,随着运动强度的增加,V˙O2 预测的准确性降低,尤其是在高强度运动中。不同解剖位置替代 HR 会显著影响 V˙O2 预测的准确性,与手臂位置相比,手腕位置的影响更为显著。总之,本研究强调了在 V˙O2 预测模型中考虑 HR 位置的重要性,RESP 和 V˙E 是有效的补偿因素。这些发现有助于改进间接 V˙O2 估计方法,提高其在不同运动强度和解剖位置下的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bef/11360153/0f121441928c/sensors-24-05412-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验