Khan Muhammad Saqib, García Marcos Fernández, Javed Mehraj, Kubacka Anna, Caudillo-Flores Uriel, Halim Sobia Ahsan, Khan Ajmal, Al-Harrasi Ahmed, Riaz Nadia
Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie, 2, Madrid 28049, Spain.
ACS Omega. 2021 Sep 28;6(40):26108-26118. doi: 10.1021/acsomega.1c03102. eCollection 2021 Oct 12.
This research evaluated the potential photocatalytic efficiency of synthesized Cu-Fe/TiO photocatalysts against organic contaminants and biocontaminants through various synthesis methods (Cu-to-Fe ratio, metal loading, and calcination temperature) and reaction parameters (photocatalyst dose, irradiation time, and different initial methyl orange (MO) concentrations). In addition, the best photocatalysts were characterized through Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), differential reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS) analysis techniques. The best metal loading was 1 wt % with 5:5 Cu/Fe ratio and 300 °C calcination temperature (5Cu-5Fe/TiO-300) having 97% MO decolorization. Further analysis indicates that the metal presence does not generate new channels for de-excitation but clearly affects the intensity and decreases charge recombination. The behavior of the photoluminescence intensity is (inversely) proportional to the activity behavior through the series, indicating that the main catalytic effect of Fe and Cu relates to charge recombination and that the Cu-Fe bimetallic catalyst optimizes such function. Moreover, the best-engineered photocatalysts asserted impactful bacteriostatic efficacy toward the tested strain (in 30 min), and therefore, molecular docking studies were used to predict the inhibition pathway against β-lactamase enzyme. The photocatalyst had a high negative docking score (-5.9 kcal mol) due to intense interactions within the active site of the enzyme. The molecular docking study revealed that the ligand could inhibit β-lactamase from producing its bactericidal activity.
本研究通过各种合成方法(铜铁比、金属负载量和煅烧温度)和反应参数(光催化剂剂量、辐照时间和不同的初始甲基橙(MO)浓度),评估了合成的Cu-Fe/TiO光催化剂对有机污染物和生物污染物的潜在光催化效率。此外,通过布鲁诺尔-埃米特-泰勒(BET)、X射线衍射(XRD)、漫反射光谱(DRS)和X射线光电子能谱(XPS)分析技术对最佳光催化剂进行了表征。最佳金属负载量为1 wt%,铜铁比为5:5,煅烧温度为300°C(5Cu-5Fe/TiO-300),MO脱色率为97%。进一步分析表明,金属的存在不会产生新的去激发通道,但明显影响强度并减少电荷复合。光致发光强度的行为与该系列中的活性行为(成反比)成正比,表明铁和铜的主要催化作用与电荷复合有关,并且Cu-Fe双金属催化剂优化了这种功能。此外,最佳设计的光催化剂对测试菌株具有显著的抑菌效果(30分钟内),因此,分子对接研究用于预测对β-内酰胺酶的抑制途径。由于酶活性位点内的强烈相互作用,光催化剂具有较高的负对接分数(-5.9 kcal mol)。分子对接研究表明,该配体可以抑制β-内酰胺酶产生其杀菌活性。