Suppr超能文献

溶剂对碳点荧光性质的影响:对多色成像的启示

Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging.

作者信息

Huo Xiaomin, Shen Honglie, Liu Rui, Shao Jing

机构信息

College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.

Dalian Inspection, Testing and Certification Group Co., Ltd., Dalian 116021, P. R. China.

出版信息

ACS Omega. 2021 Sep 27;6(40):26499-26508. doi: 10.1021/acsomega.1c03731. eCollection 2021 Oct 12.

Abstract

Carbon dots (CDs) are synthesized by the solvothermal method with four kinds of solvents including water, dimethylformamide (DMF), ethanol, and acetic acid (AA). The aqueous solutions of the above CDs emit multiple colors of blue (470 nm), green (500 nm), yellow (539 nm), and orange (595 nm). The structures, sizes, and chemical composition of the CDs are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The optical properties of multicolored CDs are analyzed by UV-vis absorption and photoluminescence (PL) spectra. It has been revealed that DMF is the key solvent to synthesized CDs for the red shift of fluorescence emission, which could be enhanced by adding an AA solvent. The structures of functional groups such as the contents of graphitic N in carbon cores and oxygen-containing functional groups on the surface of CDs are affected by these four solvents. According to the oxidation and selective reduction of NaBH, the implication for multicolor imaging has been discussed based on the COOH, C-O-C, and C=O functional groups.

摘要

碳点(CDs)通过溶剂热法,使用包括水、二甲基甲酰胺(DMF)、乙醇和乙酸(AA)在内的四种溶剂合成。上述碳点的水溶液发出蓝色(470纳米)、绿色(500纳米)、黄色(539纳米)和橙色(595纳米)等多种颜色的光。通过透射电子显微镜(TEM)、动态光散射(DLS)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对碳点的结构、尺寸和化学成分进行了表征。通过紫外可见吸收光谱和光致发光(PL)光谱分析了多色碳点的光学性质。研究发现,DMF是合成碳点导致荧光发射红移的关键溶剂,添加AA溶剂可增强这种红移。这四种溶剂会影响碳点核心中石墨氮含量和表面含氧官能团等官能团的结构。根据硼氢化钠的氧化和选择性还原,基于羧基、碳氧键和羰基官能团讨论了其在多色成像中的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd38/8515583/01bb6e661348/ao1c03731_0002.jpg

相似文献

1
Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging.
ACS Omega. 2021 Sep 27;6(40):26499-26508. doi: 10.1021/acsomega.1c03731. eCollection 2021 Oct 12.
2
Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications.
J Photochem Photobiol B. 2016 Aug;161:154-61. doi: 10.1016/j.jphotobiol.2016.05.017. Epub 2016 May 20.
4
A Facile Preparation of Multicolor Carbon Dots.
Nanoscale Res Lett. 2022 Mar 8;17(1):32. doi: 10.1186/s11671-022-03661-z.
5
Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging.
J Photochem Photobiol B. 2017 Oct;175:219-225. doi: 10.1016/j.jphotobiol.2017.08.035. Epub 2017 Sep 1.
7
Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus.
J Photochem Photobiol B. 2017 Mar;168:142-148. doi: 10.1016/j.jphotobiol.2017.02.007. Epub 2017 Feb 13.
8
Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction.
J Colloid Interface Sci. 2016 Nov 15;482:8-18. doi: 10.1016/j.jcis.2016.07.058. Epub 2016 Jul 25.

引用本文的文献

4
5
Facile, Noninvasive, and Chemical-Free Hydrogen Peroxide and Glucose Detection Using a Fluorescent Cellulose Hybrid Film Embedded with PtRu/Carbon Dots.
ACS Meas Sci Au. 2025 Apr 7;5(3):304-324. doi: 10.1021/acsmeasuresciau.5c00011. eCollection 2025 Jun 18.
7
Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.
ACS Omega. 2025 Jan 8;10(2):2354-2363. doi: 10.1021/acsomega.4c10796. eCollection 2025 Jan 21.
8
Chemical- and green-precursor-derived carbon dots for photocatalytic degradation of dyes.
iScience. 2024 Jan 17;27(2):108920. doi: 10.1016/j.isci.2024.108920. eCollection 2024 Feb 16.
9
Physicochemical and Inflammatory Analysis of Unconjugated and Conjugated Bone-Binding Carbon Dots.
ACS Omega. 2023 Dec 15;9(1):1320-1326. doi: 10.1021/acsomega.3c07653. eCollection 2024 Jan 9.
10
Solvent-Dependent Photoluminescence Emission and Colloidal Stability of Carbon Quantum dots from Watermelon Peels.
J Fluoresc. 2025 Jan;35(1):245-256. doi: 10.1007/s10895-023-03528-1. Epub 2023 Dec 1.

本文引用的文献

1
Insights into photoluminescence mechanisms of carbon dots: advances and perspectives.
Sci Bull (Beijing). 2021 Apr 30;66(8):839-856. doi: 10.1016/j.scib.2020.12.015. Epub 2020 Dec 16.
2
A Fluorescence Switching Sensor for Sensitive and Selective Detections of Cyanide and Ferricyanide Using Mercuric Cation-Graphene Quantum Dots.
ACS Omega. 2021 May 21;6(22):14379-14393. doi: 10.1021/acsomega.1c01242. eCollection 2021 Jun 8.
3
Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery.
Biomacromolecules. 2021 Jun 14;22(6):2436-2450. doi: 10.1021/acs.biomac.1c00232. Epub 2021 May 19.
4
High-Quality Carbon Nitride Quantum Dots on Photoluminescence: Effect of Carbon Sources.
Langmuir. 2021 Feb 9;37(5):1760-1767. doi: 10.1021/acs.langmuir.0c02966. Epub 2021 Jan 28.
5
Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays.
ACS Omega. 2021 Jan 7;6(2):1741-1750. doi: 10.1021/acsomega.0c05993. eCollection 2021 Jan 19.
6
Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application.
J Colloid Interface Sci. 2020 Nov 15;580:88-98. doi: 10.1016/j.jcis.2020.07.034. Epub 2020 Jul 11.
7
Effect of Solvent-Derived Highly Luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection.
Langmuir. 2020 May 19;36(19):5287-5295. doi: 10.1021/acs.langmuir.0c00631. Epub 2020 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验