Department of Physics, University of Houston, Houston, Texas 77204, United States.
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.
J Phys Chem B. 2021 Oct 28;125(42):11591-11605. doi: 10.1021/acs.jpcb.1c04792. Epub 2021 Oct 19.
We explored the dynamic and structural effects of actin-related proteins 2/3 (Arp2/3) on actomyosin networks using mechanochemical simulations of active matter networks. On the nanoscale, the Arp2/3 complex alters the topology of actomyosin by nucleating a daughter filament at an angle with respect to a mother filament. At a subcellular scale, they orchestrate the formation of a branched actomyosin network. Using a coarse-grained approach, we sought to understand how an actomyosin network temporally and spatially reorganizes itself by varying the concentration of the Arp2/3 complexes. Driven by motor dynamics, the network stalls at a high concentration of Arp2/3 and contracts at a low Arp2/3 concentration. At an intermediate Arp2/3 concentration, however, the actomyosin network is formed by loosely connected clusters that may collapse suddenly when driven by motors. This physical phenomenon is called an "avalanche" largely due to the marginal instability inherent to the morphology of a branched actomyosin network when the Arp2/3 complex is present. While embracing the data science approaches, we unveiled the higher-order patterns in the branched actomyosin networks and discovered a sudden change in the "social" network topology of actomyosin, which is a new type of avalanche in addition to the two types of avalanches associated with a sudden change in the size or shape of the whole actomyosin network, as shown in a previous investigation. Our new finding promotes the importance of using network theory and machine learning models to forecast avalanches in actomyosin networks. The mechanisms of the Arp2/3 complexes in shaping the architecture of branched actomyosin networks obtained in this paper will help us better understand the emergent reorganization of the topology in dense actomyosin networks that are difficult to detect in experiments.
我们使用活性物质网络的机械化学模拟探索了肌动蛋白相关蛋白 2/3(Arp2/3)对肌动球蛋白网络的动态和结构影响。在纳米尺度上,Arp2/3 复合物通过在与母丝成一定角度的位置上引发子丝来改变肌动球蛋白的拓扑结构。在亚细胞尺度上,它们协调分支肌动球蛋白网络的形成。使用粗粒化方法,我们试图通过改变 Arp2/3 复合物的浓度来了解肌动球蛋白网络如何随时间和空间进行自我重组。在马达动力学的驱动下,网络在高浓度的 Arp2/3 下停滞,并在低浓度的 Arp2/3 下收缩。然而,在中等浓度的 Arp2/3 下,肌动球蛋白网络由松散连接的簇组成,当受到马达驱动时可能会突然崩溃。这种物理现象主要是由于分支肌动球蛋白网络的形态固有边际不稳定性而称为“雪崩”。在拥抱数据科学方法的同时,我们揭示了分支肌动球蛋白网络中的高阶模式,并发现了肌动球蛋白的“社交”网络拓扑的突然变化,这是除了与整个肌动球蛋白网络的大小或形状突然变化相关的两种类型的雪崩之外的一种新型雪崩,如前一项研究所示。我们的新发现促进了使用网络理论和机器学习模型来预测肌动球蛋白网络中的雪崩的重要性。本文获得的 Arp2/3 复合物在塑造分支肌动球蛋白网络结构方面的机制将帮助我们更好地理解在实验中难以检测到的密集肌动球蛋白网络中拓扑的突发重组。