Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
BMC Biol. 2022 Apr 22;20(1):90. doi: 10.1186/s12915-022-01279-2.
The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions.
Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin.
We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex.
肌动球蛋白机械装置的动力学是许多重要生物学过程的核心。许多相关的细胞反应,如细胞皮层的有节奏压缩,在介观水平上受到肌动蛋白单体、肌动蛋白交联剂和肌球蛋白马达之间的非线性相互作用的控制。粗粒化模型是研究肌动球蛋白系统的理想工具,因为它们可以包括在长时间和空间尺度上发生的过程,同时保持分子相互作用的最相关特征。
在这里,我们提出了一个二维肌动球蛋白皮层的粗粒化模型,毗邻三维细胞质。我们的简化模型只包含了肌动蛋白单体、肌动蛋白交联剂和肌球蛋白之间特征明确的相互作用,它能够再现肌动蛋白丝和肌球蛋白网络形成的许多最重要的方面,如聚合和去聚合的动力学、履带运动、网络形成以及肌球蛋白的自主振荡动力学。
我们相信,目前的模型可以用于研究肌球蛋白网络对系统关键参数变化的体内反应,例如肌动蛋白丝与细胞皮层的附着改变。