Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.
Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13519-13528. doi: 10.1073/pnas.1911183117. Epub 2020 May 27.
Networks of branched actin filaments formed by Arp2/3 complex generate and experience mechanical forces during essential cellular functions, including cell motility and endocytosis. External forces regulate the assembly and architecture of branched actin networks both in vitro and in cells. Considerably less is known about how mechanical forces influence the disassembly of actin filament networks, specifically, the dissociation of branches. We used microfluidics to apply force to branches formed from purified muscle actin and fission yeast Arp2/3 complex and observed debranching events in real time with total internal reflection fluorescence microscopy. Low forces in the range of 0 pN to 2 pN on branches accelerated their dissociation from mother filaments more than two orders of magnitude, from hours to <1 min. Neither force on the mother filament nor thermal fluctuations in mother filament shape influenced debranching. Arp2/3 complex at branch junctions adopts two distinct mechanical states with different sensitivities to force, which we name "young/strong" and "old/weak." The "young/strong" state 1 has adenosine 5'-diphosphate (ADP)-P bound to Arp2/3 complex. Phosphate release converts Arp2/3 complex into the "old/weak" state 2 with bound ADP, which is 20 times more sensitive to force than state 1. Branches with ADP-Arp2/3 complex are more sensitive to debranching by fission yeast GMF (glia maturation factor) than branches with ADP-P -Arp2/3 complex. These findings suggest that aging of branch junctions by phosphate release from Arp2/3 complex and mechanical forces contribute to disassembling "old" actin filament branches in cells.
由 Arp2/3 复合物形成的分支肌动蛋白丝网络在细胞的基本功能中产生并经历机械力,包括细胞运动和内吞作用。外部力在体外和细胞内调节分支肌动蛋白网络的组装和结构。关于机械力如何影响肌动蛋白丝网络的解体,特别是分支的解离,人们知之甚少。我们使用微流控技术在纯化的肌肉肌动蛋白和裂殖酵母 Arp2/3 复合物形成的分支上施加力,并使用全内反射荧光显微镜实时观察分支的去分支事件。范围在 0 pN 到 2 pN 的低力会使分支从母丝上更快地解离,速度提高两个数量级,从数小时缩短到<1 分钟。母丝上的力或母丝形状的热涨落都不会影响去分支。分支连接处的 Arp2/3 复合物采用两种不同的机械状态,对力的敏感性不同,我们将其命名为“年轻/强”和“年老/弱”。“年轻/强”状态 1 中,ADP-磷酸盐结合到 Arp2/3 复合物上。磷酸盐释放将 Arp2/3 复合物转化为结合 ADP 的“年老/弱”状态 2,其对力的敏感性比状态 1 高 20 倍。与 ADP-P -Arp2/3 复合物结合的分支比 ADP-Arp2/3 复合物结合的分支对裂殖酵母 GMF(神经胶质成熟因子)的去分支更敏感。这些发现表明,通过 Arp2/3 复合物上磷酸盐的释放和机械力导致分支连接处的老化,有助于在细胞中解聚“旧”肌动蛋白丝分支。