Suppr超能文献

连续 UVC 照射下生物膜的生长:生长条件和生长时间对强度响应参数的定量影响。

Biofilm growth under continuous UVC irradiation: Quantitative effects of growth conditions and growth time on intensity response parameters.

机构信息

Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.

Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.

出版信息

Water Res. 2021 Nov 1;206:117747. doi: 10.1016/j.watres.2021.117747. Epub 2021 Oct 11.

Abstract

Biofilms can harbor a wide range of microorganisms, including opportunistic respiratory pathogens, and their establishment on engineered surfaces poses a risk to public health and industry. The emergence of compact germicidal ultraviolet light-emitting diodes (UV LEDs) may enable their incorporation into confined spaces to inhibit bacterial surface colonization on inaccessible surfaces, such as those in premise plumbing. Such applications necessitate knowledge of the quantitative response of biofilm growth rates to UV exposure on continuously irradiated surfaces. Herein, we performed experiments at varying flow cell temperatures in order to control baseline biofilm growth rates in the absence of UV; then, biofilm growth was compared under the same conditions but with simultaneous UVC irradiation. The inhibiting effect of UV irradiation on biofilm growth kinetics was diminished by more favorable growth conditions (higher temperature). Increasing the temperature by 10 °C resulted in an increase in biovolume by 193% under a UVC (254 nm) intensity of ∼60 µW/cm. We further fitted an existing intensity response model to the biofilm growth data and analyzed the effects of temperature on model parameters, which were consistent with a hypothesized shielding effect arising from the deposition of extracellular colloidal materials. The shielding effect was found to result in breakthrough behavior of irradiated biofilms after 48 h, wherein accumulation of shielding substances eventually enabled biofilm establishment at even relatively high irradiation intensities (102.3 µW/cm). With respect to applications of UVC irradiation for biofilm prevention, these results imply that surfaces more prone to bacterial colonization require disproportionately higher-intensity UVC irradiation for prevention of biofilm establishment, and continuous surface irradiation may be inadequate as a sole intervention for biofilm prevention in many scenarios.

摘要

生物膜可以容纳多种微生物,包括机会性呼吸道病原体,它们在工程表面上的建立对公共卫生和工业构成了威胁。紧凑型杀菌紫外线发光二极管(UV LED)的出现可能使其能够被纳入封闭空间,以抑制难以到达的表面(例如,在前提管道中)上细菌的表面定植。这种应用需要了解生物膜生长速率对连续辐照表面上 UV 暴露的定量响应。在此,我们在不同的流动池温度下进行实验,以控制不存在 UV 的情况下的基线生物膜生长速率;然后,在相同条件下但同时进行 UVC 照射下比较生物膜生长。UV 照射对生物膜生长动力学的抑制作用随着更有利的生长条件(更高的温度)而减弱。温度升高 10°C 会导致在 UVC(254nm)强度约为 60µW/cm 的情况下生物体积增加 193%。我们进一步将现有的强度响应模型拟合到生物膜生长数据中,并分析了温度对模型参数的影响,这与由于细胞外胶体物质的沉积而产生的屏蔽效应的假设一致。屏蔽效应导致经过 48 小时后,受辐照的生物膜出现突破行为,其中屏蔽物质的积累最终使得即使在相对较高的照射强度(102.3µW/cm)下也能建立生物膜。就 UVC 照射用于生物膜预防的应用而言,这些结果表明,更容易发生细菌定植的表面需要不成比例的更高强度的 UVC 照射才能防止生物膜的建立,并且在许多情况下,连续的表面照射可能不足以作为生物膜预防的唯一干预措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验