Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
Bernstein Center for Computational Neuroscience, Berlin, Germany.
PLoS Comput Biol. 2024 Feb 20;20(2):e1011886. doi: 10.1371/journal.pcbi.1011886. eCollection 2024 Feb.
Hippocampal ripple oscillations have been implicated in important cognitive functions such as memory consolidation and planning. Multiple computational models have been proposed to explain the emergence of ripple oscillations, relying either on excitation or inhibition as the main pacemaker. Nevertheless, the generating mechanism of ripples remains unclear. An interesting dynamical feature of experimentally measured ripples, which may advance model selection, is intra-ripple frequency accommodation (IFA): a decay of the instantaneous ripple frequency over the course of a ripple event. So far, only a feedback-based inhibition-first model, which relies on delayed inhibitory synaptic coupling, has been shown to reproduce IFA. Here we use an analytical mean-field approach and numerical simulations of a leaky integrate-and-fire spiking network to explain the mechanism of IFA. We develop a drift-based approximation for the oscillation dynamics of the population rate and the mean membrane potential of interneurons under strong excitatory drive and strong inhibitory coupling. For IFA, the speed at which the excitatory drive changes is critical. We demonstrate that IFA arises due to a speed-dependent hysteresis effect in the dynamics of the mean membrane potential, when the interneurons receive transient, sharp wave-associated excitation. We thus predict that the IFA asymmetry vanishes in the limit of slowly changing drive, but is otherwise a robust feature of the feedback-based inhibition-first ripple model.
海马回棘波震荡与记忆巩固和规划等重要认知功能有关。多个计算模型被提出来解释棘波震荡的出现,这些模型依赖于兴奋或抑制作为主要的起搏器。然而,棘波的产生机制仍不清楚。一个有趣的实验测量棘波的动态特征,可能会促进模型选择,是棘波内频率适应(IFA):在一个棘波事件中,瞬时棘波频率的衰减。到目前为止,只有一种基于反馈的抑制优先模型,它依赖于延迟抑制性突触耦合,已经被证明可以重现 IFA。在这里,我们使用一个解析的平均场方法和一个漏积分和触发(LIF)神经元网络的数值模拟来解释 IFA 的机制。我们为在强兴奋驱动和强抑制耦合下神经元群体的放电率和膜电位的振荡动力学开发了一个基于漂移的近似。对于 IFA,兴奋驱动变化的速度是关键。我们证明,当神经元接收短暂的、与尖波相关的兴奋时,由于膜电位的动态存在一个依赖于速度的滞后效应,因此会产生 IFA。因此,我们预测当驱动变化缓慢时,IFA 不对称性会消失,但在其他情况下,这是基于反馈的抑制优先的棘波模型的一个稳健特征。