Suppr超能文献

使用主成分分析初始化的深度学习预测协同药物组合

Prediction of synergistic drug combinations using PCA-initialized deep learning.

作者信息

Ma Jun, Motsinger-Reif Alison

机构信息

Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.

Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Durham, NC, 27709, USA.

出版信息

BioData Min. 2021 Oct 20;14(1):46. doi: 10.1186/s13040-021-00278-3.

Abstract

BACKGROUND

Cancer is one of the main causes of death worldwide. Combination drug therapy has been a mainstay of cancer treatment for decades and has been shown to reduce host toxicity and prevent the development of acquired drug resistance. However, the immense number of possible drug combinations and large synergistic space makes it infeasible to screen all effective drug pairs experimentally. Therefore, it is crucial to develop computational approaches to predict drug synergy and guide experimental design for the discovery of rational combinations for therapy.

RESULTS

We present a new deep learning approach to predict synergistic drug combinations by integrating gene expression profiles from cell lines and chemical structure data. Specifically, we use principal component analysis (PCA) to reduce the dimensionality of the chemical descriptor data and gene expression data. We then propagate the low-dimensional data through a neural network to predict drug synergy values. We apply our method to O'Neil's high-throughput drug combination screening data as well as a dataset from the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge. We compare the neural network approach with and without dimension reduction. Additionally, we demonstrate the effectiveness of our deep learning approach and compare its performance with three state-of-the-art machine learning methods: Random Forests, XGBoost, and elastic net, with and without PCA-based dimensionality reduction.

CONCLUSIONS

Our developed approach outperforms other machine learning methods, and the use of dimension reduction dramatically decreases the computation time without sacrificing accuracy.

摘要

背景

癌症是全球主要死因之一。联合药物治疗数十年来一直是癌症治疗的主要手段,已被证明可降低宿主毒性并防止获得性耐药的发展。然而,大量可能的药物组合以及巨大的协同空间使得通过实验筛选所有有效的药物对变得不可行。因此,开发计算方法来预测药物协同作用并指导实验设计以发现合理的治疗组合至关重要。

结果

我们提出了一种新的深度学习方法,通过整合细胞系的基因表达谱和化学结构数据来预测协同药物组合。具体而言,我们使用主成分分析(PCA)来降低化学描述符数据和基因表达数据的维度。然后,我们通过神经网络传播低维数据以预测药物协同值。我们将我们的方法应用于奥尼尔的高通量药物组合筛选数据以及阿斯利康 - 桑格药物组合预测DREAM挑战赛的一个数据集。我们比较了有无降维的神经网络方法。此外,我们展示了我们深度学习方法的有效性,并将其性能与三种先进的机器学习方法进行比较:随机森林、XGBoost和弹性网络,有无基于PCA的降维。

结论

我们开发的方法优于其他机器学习方法,并且降维的使用在不牺牲准确性的情况下显著减少了计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/8527604/0a830146f861/13040_2021_278_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验