Suppr超能文献

中国新生儿网络数据收集系统的数据质量改进与内部数据审计

Data Quality Improvement and Internal Data Audit of the Chinese Neonatal Network Data Collection System.

作者信息

Sun Jianhua, Cao Yun, Hei Mingyan, Sun Huiqing, Wang Laishuan, Zhou Wei, Chen Xiafang, Jiang Siyuan, Zhang Huayan, Ma Xiaolu, Wu Hui, Li Xiaoying, Shi Yuan, Gu Xinyue, Wang Yanchen, Yang Tongling, Lu Yulan, Zhou Wenhao, Chen Chao, Lee Shoo K, Du Lizhong

机构信息

Department of Neonatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China.

出版信息

Front Pediatr. 2021 Oct 4;9:711200. doi: 10.3389/fped.2021.711200. eCollection 2021.

Abstract

The Chinese Neonatal Network (CHNN) is a nationwide neonatal network that aims to improve clinical neonatal care quality and short- and long-term health outcomes of infants. This study aims to assess the quality of the Chinese Neonatal Network database by conducting an internal audit of data extraction. A data audit was performed by independently replicating the data collection and entry process in all 58 tertiary neonatal intensive care units (NICU) participating in the CHNN. Eighty-eight data elements selected for re-abstraction were classified into three categories (critical, important, less important), and agreement rates for original and re-abstracted data were predefined. Three to five records were randomly selected at each site for re-abstraction, including one short- (0-7 days), two medium- (8-28 days), and two long-stay (more than 28 days) cases. Agreement rates for each data item were calculated for individual NICUs and across the network, respectively. A total of 283 cases and 24,904 data fields were re-abstracted. The agreement rates for original and re-abstracted data elements were 96.1% overall, and 97.2, 94.3, and 96.6% for critical, important, and less important data elements, respectively. Individual site variation for discrepancies ranged between 0.0 and 18.4% for all collected data elements. The completeness, precision, and quality of data in the CHNN database are high, providing assurance for multipurpose use, including health service evaluation, quality improvement, clinical trials, and other research.

摘要

中国新生儿网络(CHNN)是一个全国性的新生儿网络,旨在提高临床新生儿护理质量以及婴儿的短期和长期健康结局。本研究旨在通过对数据提取进行内部审核来评估中国新生儿网络数据库的质量。通过独立重复参与CHNN的所有58个三级新生儿重症监护病房(NICU)的数据收集和录入过程来进行数据审核。为重新提取而选择的88个数据元素被分为三类(关键、重要、不太重要),并预先定义了原始数据和重新提取数据的一致率。在每个站点随机选择三到五条记录进行重新提取,包括一例短期(0 - 7天)、两例中期(8 - 28天)和两例长期住院(超过28天)病例。分别计算了各个NICU以及整个网络中每个数据项的一致率。总共重新提取了283例病例和24,904个数据字段。原始数据元素和重新提取数据元素的总体一致率为96.1%,关键、重要和不太重要数据元素的一致率分别为97.2%、94.3%和96.6%。所有收集到的数据元素的差异在各个站点之间的变化范围为0.0%至18.4%。CHNN数据库中数据的完整性、准确性和质量很高,为包括卫生服务评估、质量改进、临床试验和其他研究在内的多用途使用提供了保障。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1173/8522580/e55fd049297b/fped-09-711200-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验