Noura Mahda, Gyrard Amelie, Heil Sebastian, Gaedke Martin
Technische Universität Chemnitz, Germany.
Kno.e.sis, Wright State University, USA.
IEEE Internet Things J. 2019 Oct;6(5):8447-8454. doi: 10.1109/jiot.2019.2918327. Epub 2019 May 22.
The Internet of Things (IoT) primary objective is to make a hyper-connected world for various application domains. However, IoT suffers from a lack of interoperability leading to a substantial threat to the predicted economic value. Schema.org provides semantic interoperability to structure heterogeneous data on the Web. An extension of this vocabulary for the IoT domain (iot.schema.org) is an ongoing research effort to address semantic interoperability for the Web of Things (WoT). To design this vocabulary, a central challenge is to identify the main topics (concepts and properties) automatically from existing knowledge in IoT applications. We designed KE4WoT (Knowledge Extraction for the Web of Things) to automatically identify the most important topics from literature ontologies of 3 different IoT application domains - smart home, smart city and smart weather - based on our corpus consisting of 4500 full-text conference and journal articles to utilize domain-specific knowledge encoded within IoT publications. Despite the importance of automatically identifying the relevant topics for iot.schema.org, up to know there is no study dealing with this issue. To evaluate the extracted topics, we compare the descriptiveness of these topics for the 10 most popular ontologies in the 3 domains with empirical evaluations of 23 domain experts. The results illustrate that the identified main topics of IoT ontologies can be used to sufficiently describe existing ontologies as keywords.
物联网(IoT)的主要目标是为各种应用领域打造一个高度互联的世界。然而,物联网存在缺乏互操作性的问题,这对预期的经济价值构成了重大威胁。Schema.org提供语义互操作性,以构建网络上的异构数据。针对物联网领域对该词汇表进行扩展(iot.schema.org)是一项正在进行的研究工作,旨在解决物联网(WoT)的语义互操作性问题。在设计这个词汇表时,一个核心挑战是从物联网应用中的现有知识中自动识别主要主题(概念和属性)。我们设计了KE4WoT(物联网知识提取),基于由4500篇全文会议和期刊文章组成的语料库,从智能家居、智能城市和智能天气这3个不同的物联网应用领域的文献本体中自动识别最重要的主题,以利用物联网出版物中编码的特定领域知识。尽管自动识别与iot.schema.org相关的主题很重要,但到目前为止还没有研究处理这个问题。为了评估提取的主题,我们将这些主题在这3个领域中10个最流行本体中的描述性与23位领域专家的实证评估进行了比较。结果表明,所识别的物联网本体的主要主题可以用作关键词来充分描述现有本体。