Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.
Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
Magn Reson Med. 2022 Feb;87(2):800-809. doi: 10.1002/mrm.29016. Epub 2021 Oct 20.
Clinical applicability of renal arterial spin labeling (ASL) MRI is hampered because of time consuming and observer dependent post-processing, including manual segmentation of the cortex to obtain cortical renal blood flow (RBF). Machine learning has proven its value in medical image segmentation, including the kidneys. This study presents a fully automatic workflow for renal cortex perfusion quantification by including machine learning-based segmentation.
Fully automatic workflow was achieved by construction of a cascade of 3 U-nets to replace manual segmentation in ASL quantification. All 1.5T ASL-MRI data, including M , T , and ASL label-control images, from 10 healthy volunteers was used for training (dataset 1). Trained cascade performance was validated on 4 additional volunteers (dataset 2). Manual segmentations were generated by 2 observers, yielding reference and second observer segmentations. To validate the intended use of the automatic segmentations, manual and automatic RBF values in mL/min/100 g were compared.
Good agreement was found between automatic and manual segmentations on dataset 1 (dice score = 0.78 ± 0.04), which was in line with inter-observer variability (dice score = 0.77 ± 0.02). Good agreement was confirmed on dataset 2 (dice score = 0.75 ± 0.03). Moreover, similar cortical RBF was obtained with automatic or manual segmentations, on average and at subject level; with 211 ± 31 mL/min/100 g and 208 ± 31 mL/min/100 g (P < .05), respectively, with narrow limits of agreement at -11 and 4.6 mL/min/100 g. RBF accuracy with automated segmentations was confirmed on dataset 2.
Our proposed method automates ASL quantification without compromising RBF accuracy. With quick processing and without observer dependence, renal ASL-MRI is more attractive for clinical application as well as for longitudinal and multi-center studies.
由于耗时且依赖观察者的后处理,包括手动分割皮质以获得皮质肾血流(RBF),肾动脉自旋标记(ASL)MRI 的临床适用性受到限制。机器学习已证明其在医学图像分割中的价值,包括肾脏。本研究提出了一种通过包括基于机器学习的分割来实现肾皮质灌注定量的全自动工作流程。
通过构建 3 个 U-Net 级联来替代 ASL 定量中的手动分割,实现了全自动工作流程。所有 10 名健康志愿者的 1.5T ASL-MRI 数据,包括 M、T 和 ASL 标签控制图像,均用于训练(数据集 1)。在另外 4 名志愿者(数据集 2)上验证了训练级联的性能。由 2 名观察者生成手动分割,产生参考和第二观察者分割。为了验证自动分割的预期用途,比较了手动和自动 RBF 值(mL/min/100 g)。
在数据集 1 上,自动和手动分割之间存在良好的一致性(dice 评分=0.78±0.04),与观察者间变异性一致(dice 评分=0.77±0.02)。在数据集 2 上也得到了确认(dice 评分=0.75±0.03)。此外,平均而言,在个体水平上,使用自动或手动分割都可以获得相似的皮质 RBF;分别为 211±31 mL/min/100 g 和 208±31 mL/min/100 g(P<0.05),其一致性界限为-11 和 4.6 mL/min/100 g。在数据集 2 上也证实了自动分割的 RBF 准确性。
我们提出的方法在不影响 RBF 准确性的情况下自动进行 ASL 定量。使用快速处理且不依赖观察者,肾 ASL-MRI 更适合临床应用以及纵向和多中心研究。