Suppr超能文献

短轴磁共振图像半自动右心室分割方法的评估。

Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images.

机构信息

Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Room Hs-220, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.

Research and Development Department, Pie Medical Imaging, BV, Maastricht, the Netherlands.

出版信息

J Digit Imaging. 2018 Oct;31(5):670-679. doi: 10.1007/s10278-018-0061-3.

Abstract

The purpose of this study was to evaluate a semi-automatic right ventricle segmentation method on short-axis cardiac cine MR images which segment all right ventricle contours in a cardiac phase using one seed contour. Twenty-eight consecutive short-axis, four-chamber, and tricuspid valve view cardiac cine MRI examinations of healthy volunteers were used. Two independent observers performed the manual and automatic segmentations of the right ventricles. Analyses were based on the ventricular volume and ejection fraction of the right heart chamber. Reproducibility of the manual and semi-automatic segmentations was assessed using intra- and inter-observer variability. Validity of the semi-automatic segmentations was analyzed with reference to the manual segmentations. The inter- and intra-observer variability of manual segmentations were between 0.8 and 3.2%. The semi-automatic segmentations were highly correlated with the manual segmentations (R 0.79-0.98), with median difference of 0.9-4.8% and of 3.3% for volume and ejection fraction parameters, respectively. In comparison to the manual segmentation, the semi-automatic segmentation produced contours with median dice metrics of 0.95 and 0.87 and median Hausdorff distance of 5.05 and 7.35 mm for contours at end-diastolic and end-systolic phases, respectively. The inter- and intra-observer variability of the semi-automatic segmentations were lower than observed in the manual segmentations. Both manual and semi-automatic segmentations performed better at the end-diastolic phase than at the end-systolic phase. The investigated semi-automatic segmentation method managed to produce a valid and reproducible alternative to manual right ventricle segmentation.

摘要

本研究旨在评估一种半自动右心室分割方法,该方法使用一个种子轮廓在一个心动周期内分割所有右心室轮廓。使用了 28 例连续的短轴、四腔和三尖瓣视图心脏电影磁共振成像检查的健康志愿者。两名独立观察者分别进行手动和自动的右心室分割。分析基于右心腔的心室容积和射血分数。采用观察者内和观察者间的变异性评估手动和半自动分割的可重复性。通过与手动分割的比较来分析半自动分割的有效性。手动分割的观察者内和观察者间变异性在 0.8 到 3.2%之间。半自动分割与手动分割高度相关(R 值为 0.79-0.98),体积和射血分数参数的中位数差异分别为 0.9-4.8%和 3.3%。与手动分割相比,半自动分割产生的轮廓的迪奇度量中位数分别为 0.95 和 0.87,舒张末期和收缩末期的轮廓的豪斯多夫距离中位数分别为 5.05 和 7.35 毫米。半自动分割的观察者内和观察者间变异性低于手动分割。手动和半自动分割在舒张末期的性能均优于收缩末期。研究中调查的半自动分割方法成功地为手动右心室分割提供了一种有效且可重复的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81b/6148820/046048e41f61/10278_2018_61_Fig1_HTML.jpg

相似文献

1
Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images.
J Digit Imaging. 2018 Oct;31(5):670-679. doi: 10.1007/s10278-018-0061-3.
2
Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans.
Med Image Anal. 2017 Jul;39:44-55. doi: 10.1016/j.media.2017.04.004. Epub 2017 Apr 13.
3
Evaluation of cardiac biventricular segmentation from multiaxis MRI data: a multicenter study.
J Magn Reson Imaging. 2008 Sep;28(3):626-36. doi: 10.1002/jmri.21520.
4
Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images.
Phys Med Biol. 2010 Feb 21;55(4):1127-40. doi: 10.1088/0031-9155/55/4/015. Epub 2010 Jan 28.
5
Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images.
J Magn Reson Imaging. 2008 Jan;27(1):86-93. doi: 10.1002/jmri.21236.
7
A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2021 Apr 26;23(1):47. doi: 10.1186/s12968-020-00695-z.
9
Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours.
BMC Med Imaging. 2021 Jun 19;21(1):101. doi: 10.1186/s12880-021-00630-3.
10
Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM.
Comput Methods Programs Biomed. 2023 Oct;240:107679. doi: 10.1016/j.cmpb.2023.107679. Epub 2023 Jun 14.

引用本文的文献

1
Cardiac Cine MRI Using a Commercially Available 0.55-T Scanner.
Radiol Cardiothorac Imaging. 2024 Aug;6(4):e230331. doi: 10.1148/ryct.230331.
2
Clinical assessment of an AI tool for measuring biventricular parameters on cardiac MR.
Front Cardiovasc Med. 2024 Feb 5;11:1279298. doi: 10.3389/fcvm.2024.1279298. eCollection 2024.
3
Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.
Circ Cardiovasc Imaging. 2023 Dec;16(12):e014533. doi: 10.1161/CIRCIMAGING.122.014533. Epub 2023 Dec 11.
4
Computational Modeling of Right Ventricular Motion and Intracardiac Flow in Repaired Tetralogy of Fallot.
Cardiovasc Eng Technol. 2022 Feb;13(1):41-54. doi: 10.1007/s13239-021-00558-3. Epub 2021 Jun 24.
6
A framework for constraining image SNR loss due to MR raw data compression.
MAGMA. 2019 Apr;32(2):213-225. doi: 10.1007/s10334-018-0709-5. Epub 2018 Oct 25.

本文引用的文献

1
Segmentation of Left and Right Ventricles in Cardiac MRI Using Active Contours.
Comput Math Methods Med. 2017;2017:8350680. doi: 10.1155/2017/8350680. Epub 2017 Aug 8.
2
Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach.
Magn Reson Med. 2017 Dec;78(6):2439-2448. doi: 10.1002/mrm.26631. Epub 2017 Feb 16.
3
Influence of the short-axis cine acquisition protocol on the cardiac function evaluation: A reproducibility study.
Eur J Radiol Open. 2016 Mar 23;3:60-6. doi: 10.1016/j.ejro.2016.03.003. eCollection 2016.
4
Normal values for cardiovascular magnetic resonance in adults and children.
J Cardiovasc Magn Reson. 2015 Apr 18;17(1):29. doi: 10.1186/s12968-015-0111-7.
5
Right ventricle segmentation from cardiac MRI: a collation study.
Med Image Anal. 2015 Jan;19(1):187-202. doi: 10.1016/j.media.2014.10.004. Epub 2014 Oct 28.
6
Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI.
Comput Med Imaging Graph. 2014 Apr;38(3):190-201. doi: 10.1016/j.compmedimag.2013.12.011. Epub 2014 Jan 2.
7
Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update.
J Cardiovasc Magn Reson. 2013 Oct 8;15(1):91. doi: 10.1186/1532-429X-15-91.
8
Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability.
Acad Radiol. 2012 Aug;19(8):991-1002. doi: 10.1016/j.acra.2012.03.022. Epub 2012 May 17.
9
Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR.
Eur Radiol. 2012 May;22(5):1041-9. doi: 10.1007/s00330-011-2345-6. Epub 2012 Jan 24.
10
Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease.
JACC Cardiovasc Imaging. 2012 Jan;5(1):28-37. doi: 10.1016/j.jcmg.2011.05.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验