Usha Sruthi Prasood, Manoharan Hariharan, Deshmukh Rehan, Álvarez-Diduk Ruslan, Calucho Enric, Sai V V R, Merkoçi Arben
Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
Chem Soc Rev. 2021 Nov 29;50(23):13012-13089. doi: 10.1039/d1cs00137j.
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
在现实生活样本(如生物体液、水、土壤和食物)中检测超低丰度的分析物,需要设计和开发高性能的生物传感模式。科学界的突破性努力已促成了传感技术的实现,这些技术能够以相关的灵敏度、选择性、响应时间和采样效率来测量分析物的超痕量水平,在本综述中称为阿托摩尔分析物传感技术(AttoSens)。在一个AttoSens平台中,1 aM的检测对应于在100 μL样本体积中对60个目标分析物分子的定量。在此,我们综述了各种传感器探针设计所列出的方法及其传感策略,这些方法和策略为检测阿托摩尔(aM:10⁻¹⁸ M)浓度的分析物铺平了道路。本文还总结了过去十年不同AttoSens趋势所取得的技术进展。