Suppr超能文献

光学生物传感中的灵敏度增强策略。

Sensitivity-Enhancing Strategies in Optical Biosensing.

机构信息

Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Small. 2021 Jan;17(4):e2004988. doi: 10.1002/smll.202004988. Epub 2020 Dec 28.

Abstract

High-sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity-improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity-improving strategies are introduced, which can be developed into "plug-and-play" modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion-limit-breaking systems for enhancing sensor-analyte contact and subsequent analyte recognition by fluid-mixing and analyte-concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.

摘要

高灵敏度检测临床相关分析物的微量或浓度变化对于生物传感至关重要,可确保准确的疾病诊断和可靠的健康监测。从化学、物理和生物学的角度已经提出了各种提高灵敏度的概念。在这篇综述中,根据典型生物传感工作流程(包括采样、分析物识别和信号转导)中的操作步骤,对负责提高灵敏度的要素进行了分类和讨论。本文重点介绍了光学生物传感,引入了示例性的灵敏度提高策略,这些策略可以开发成许多现有和未来传感器的“即插即用”模块,并讨论了它们提高生物传感性能的机制。涵盖了三大策略:i)通过聚合和纳米催化剂放大信号转导,ii)用于增强传感器-分析物接触和随后通过流体混合和分析物浓缩进行分析物识别的扩散限制突破系统,以及 iii)在采样和识别步骤利用肾浓集以及在信号转导步骤利用化学信号放大的组合方法。

相似文献

1
Sensitivity-Enhancing Strategies in Optical Biosensing.光学生物传感中的灵敏度增强策略。
Small. 2021 Jan;17(4):e2004988. doi: 10.1002/smll.202004988. Epub 2020 Dec 28.
4
Target-triggered polymerization for biosensing.靶向引发聚合用于生物传感。
Acc Chem Res. 2012 Sep 18;45(9):1441-50. doi: 10.1021/ar200310f. Epub 2012 Jul 10.
6
Signal amplification using functional nanomaterials for biosensing.基于功能纳米材料的生物传感信号放大。
Chem Soc Rev. 2012 Mar 21;41(6):2122-34. doi: 10.1039/c1cs15274b. Epub 2012 Jan 25.
7
Ratiometric optical probes for biosensing.用于生物传感的比率光学探针。
Theranostics. 2023 Apr 29;13(8):2632-2656. doi: 10.7150/thno.82323. eCollection 2023.
8
Mechanochemical Sensing: A Biomimetic Sensing Strategy.机械化学传感:一种仿生传感策略。
Chemphyschem. 2015 Jun 22;16(9):1829-37. doi: 10.1002/cphc.201500080. Epub 2015 Apr 27.

引用本文的文献

3
Multimodal Biosensing of Foodborne Pathogens.食源性致病菌的多模式生物传感检测。
Int J Mol Sci. 2024 May 29;25(11):5959. doi: 10.3390/ijms25115959.
6
Bio-inspired optical structures for enhancing luminescence.用于增强发光的生物启发式光学结构。
Exploration (Beijing). 2023 Apr 11;3(4):20220052. doi: 10.1002/EXP.20220052. eCollection 2023 Aug.
8
Ratiometric optical probes for biosensing.用于生物传感的比率光学探针。
Theranostics. 2023 Apr 29;13(8):2632-2656. doi: 10.7150/thno.82323. eCollection 2023.
9
Recent advances in fluorescence anisotropy/polarization signal amplification.荧光各向异性/偏振信号放大的最新进展
RSC Adv. 2022 Feb 23;12(11):6364-6376. doi: 10.1039/d2ra00058j. eCollection 2022 Feb 22.

本文引用的文献

3
Advancing Biosensors with Machine Learning.借助机器学习推动生物传感器发展。
ACS Sens. 2020 Nov 25;5(11):3346-3364. doi: 10.1021/acssensors.0c01424. Epub 2020 Nov 13.
5
Artificial intelligence biosensors: Challenges and prospects.人工智能生物传感器:挑战与前景。
Biosens Bioelectron. 2020 Oct 1;165:112412. doi: 10.1016/j.bios.2020.112412. Epub 2020 Jul 3.
9
Recent advances and perspectives of nucleic acid detection for coronavirus.冠状病毒核酸检测的最新进展与展望
J Pharm Anal. 2020 Apr;10(2):97-101. doi: 10.1016/j.jpha.2020.02.010. Epub 2020 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验