Suppr超能文献

用于超灵敏表面增强拉曼散射的金属氧化物异质结阵列中的热电子注入调控

Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.

作者信息

Fan Xingce, Wei Penghua, Li Guoqun, Li Mingze, Lan Leilei, Hao Qi, Qiu Teng

机构信息

School of Physics, Southeast University, Nanjing 211189, China.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 3;13(43):51618-51627. doi: 10.1021/acsami.1c11977. Epub 2021 Oct 21.

Abstract

Efficient photoinduced charge transfer (PICT) resonance is crucial to the surface-enhanced Raman scattering (SERS) performance of metal oxide substrates. Herein, we venture into the hot-electron injection strategy to achieve unprecedented enhanced PICT efficiency between substrates and molecules. A heterojunction array composed of plasmonic MoO and semiconducting WO is designed to prove the concept. The plasmonic MoO generates intense localized surface plasmon resonance under illumination, which can generate near-field Raman enhancement as well as accompanied plasmon-induced hot-electrons. The hot-electron injection in direct interfacial charge transfer and plasmon-induced charge transfer process can effectively promote the PICT efficiency between substrates and molecules, achieving a record Raman enhancement factor among metal oxide substrates (2.12 × 10) and the ultrasensitive detection of target molecule down to 10 M. This work demonstrates the possibility of hot-electron manipulation to realize unprecedented Raman enhancement in metal oxides, offering a cutting-edge strategy to design high-performance SERS substrates.

摘要

高效的光致电荷转移(PICT)共振对于金属氧化物基底的表面增强拉曼散射(SERS)性能至关重要。在此,我们采用热电子注入策略,以实现基底与分子之间前所未有的增强PICT效率。设计了一种由等离子体MoO和半导体WO组成的异质结阵列来验证这一概念。等离子体MoO在光照下产生强烈的局域表面等离子体共振,这可以产生近场拉曼增强以及伴随的等离子体诱导热电子。在直接界面电荷转移和等离子体诱导电荷转移过程中的热电子注入可以有效促进基底与分子之间的PICT效率,在金属氧化物基底中实现创纪录的拉曼增强因子(2.12×10),并实现对低至10 M的目标分子的超灵敏检测。这项工作证明了通过热电子操控在金属氧化物中实现前所未有的拉曼增强的可能性,为设计高性能SERS基底提供了一种前沿策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验