Suppr超能文献

深度学习揭示了神经tau 病中白质病理的疾病特异性特征。

Deep learning reveals disease-specific signatures of white matter pathology in tauopathies.

机构信息

Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, USA.

Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, USA.

出版信息

Acta Neuropathol Commun. 2021 Oct 21;9(1):170. doi: 10.1186/s40478-021-01271-x.

Abstract

Although pathology of tauopathies is characterized by abnormal tau protein aggregation in both gray and white matter regions of the brain, neuropathological investigations have generally focused on abnormalities in the cerebral cortex because the canonical aggregates that form the diagnostic criteria for these disorders predominate there. This corticocentric focus tends to deemphasize the relevance of the more complex white matter pathologies, which remain less well characterized and understood. We took a data-driven machine-learning approach to identify novel disease-specific morphologic signatures of white matter aggregates in three tauopathies: Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). We developed automated approaches using whole slide images of tau immunostained sections from 49 human autopsy brains (16 AD,13 CBD, 20 PSP) to identify cortex/white matter regions and individual tau aggregates, and compared tau-aggregate morphology across these diseases. Tau burden in the gray and white matter for individual subjects strongly correlated in a highly disease-specific fashion. We discovered previously unrecognized tau morphologies for AD, CBD and PSP that may be of importance in disease classification. Intriguingly, our models classified diseases equally well based on either white or gray matter tau staining. Our results suggest that tau pathology in white matter is informative, disease-specific, and linked to gray matter pathology. Machine learning has the potential to reveal latent information in histologic images that may represent previously unrecognized patterns of neuropathology, and additional studies of tau pathology in white matter could improve diagnostic accuracy.

摘要

尽管神经病理学中的 tau 病以大脑灰质和白质区域中异常的 tau 蛋白聚集为特征,但神经病理学研究通常集中在大脑皮层的异常上,因为形成这些疾病诊断标准的典型聚集物主要存在于那里。这种以皮质为中心的焦点往往淡化了更复杂的白质病理学的相关性,而这些病理学仍然不太为人所知。我们采用了一种数据驱动的机器学习方法,在三种 tau 病(阿尔茨海默病、进行性核上性麻痹和皮质基底节变性)中识别白质聚集物的新型疾病特异性形态特征。我们使用来自 49 个人体尸检大脑的 tau 免疫染色切片的全幻灯片图像开发了自动化方法(16 例 AD、13 例 CBD、20 例 PSP),以识别皮质/白质区域和单个 tau 聚集物,并比较了这些疾病中的 tau 聚集物形态。个体受试者的灰质和白质中的 tau 负担以高度疾病特异性的方式强烈相关。我们发现了以前未被识别的 AD、CBD 和 PSP 的 tau 形态,它们在疾病分类中可能很重要。有趣的是,我们的模型可以根据白质或灰质 tau 染色同样好地对疾病进行分类。我们的结果表明,白质中的 tau 病理学具有信息性、疾病特异性,并与灰质病理学相关。机器学习有可能揭示组织学图像中的潜在信息,这些信息可能代表以前未被识别的神经病理学模式,并且对白质中的 tau 病理学进行更多研究可以提高诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd50/8529809/2bef314dc407/40478_2021_1271_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验