Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, Florida.
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.
Lab Invest. 2023 Jun;103(6):100127. doi: 10.1016/j.labinv.2023.100127. Epub 2023 Mar 6.
Neuropathologic assessment during autopsy is the gold standard for diagnosing neurodegenerative disorders. Neurodegenerative conditions, such as Alzheimer disease (AD) neuropathological change, are a continuous process from normal aging rather than categorical; therefore, diagnosing neurodegenerative disorders is a complicated task. We aimed to develop a pipeline for diagnosing AD and other tauopathies, including corticobasal degeneration (CBD), globular glial tauopathy, Pick disease, and progressive supranuclear palsy. We used a weakly supervised deep learning-based approach called clustering-constrained-attention multiple-instance learning (CLAM) on the whole-slide images (WSIs) of patients with AD (n = 30), CBD (n = 20), globular glial tauopathy (n = 10), Pick disease (n = 20), and progressive supranuclear palsy (n = 20), as well as nontauopathy controls (n = 21). Three sections (A: motor cortex; B: cingulate gyrus and superior frontal gyrus; and C: corpus striatum) that had been immunostained for phosphorylated tau were scanned and converted to WSIs. We evaluated 3 models (classic multiple-instance learning, single-attention-branch CLAM, and multiattention-branch CLAM) using 5-fold cross-validation. Attention-based interpretation analysis was performed to identify the morphologic features contributing to the classification. Within highly attended regions, we also augmented gradient-weighted class activation mapping to the model to visualize cellular-level evidence of the model's decisions. The multiattention-branch CLAM model using section B achieved the highest area under the curve (0.970 ± 0.037) and diagnostic accuracy (0.873 ± 0.087). A heatmap showed the highest attention in the gray matter of the superior frontal gyrus in patients with AD and the white matter of the cingulate gyrus in patients with CBD. Gradient-weighted class activation mapping showed the highest attention in characteristic tau lesions for each disease (eg, numerous tau-positive threads in the white matter inclusions for CBD). Our findings support the feasibility of deep learning-based approaches for the classification of neurodegenerative disorders on WSIs. Further investigation of this method, focusing on clinicopathologic correlations, is warranted.
尸检时的神经病理学评估是诊断神经退行性疾病的金标准。神经退行性疾病,如阿尔茨海默病(AD)的神经病理学改变,是一个从正常衰老开始的连续过程,而不是分类的;因此,诊断神经退行性疾病是一项复杂的任务。我们旨在开发一种用于诊断 AD 和其他 tau 病的管道,包括皮质基底节变性(CBD)、球状神经胶质 tau 病、Pick 病和进行性核上性麻痹。我们使用一种名为聚类约束注意力多实例学习(CLAM)的基于弱监督深度学习的方法,对 AD(n=30)、CBD(n=20)、球状神经胶质 tau 病(n=10)、Pick 病(n=20)和进行性核上性麻痹(n=20)患者的全切片图像(WSI)以及非 tau 病对照(n=21)进行了分析。对已用磷酸化 tau 免疫染色的 3 个切片(A:运动皮层;B:扣带回和额上回;C:纹状体)进行扫描并转换为 WSI。我们使用 5 折交叉验证评估了 3 种模型(经典多实例学习、单注意力分支 CLAM 和多注意力分支 CLAM)。进行基于注意力的解释分析以确定有助于分类的形态特征。在高度关注的区域内,我们还将梯度加权类激活映射添加到模型中,以可视化模型决策的细胞级证据。使用 B 切片的多注意力分支 CLAM 模型实现了最高的曲线下面积(0.970±0.037)和诊断准确性(0.873±0.087)。热图显示 AD 患者额上回灰质和 CBD 患者扣带回白质的关注度最高。梯度加权类激活映射显示了每种疾病特征性 tau 病变的最高关注度(例如,CBD 中的白质包含物中存在大量 tau 阳性纤维)。我们的研究结果支持基于深度学习的方法在 WSI 上对神经退行性疾病进行分类的可行性。进一步研究这种方法,重点关注临床病理相关性,是有必要的。