Suppr超能文献

用于神经退行性疾病结构 - 病理相关性定量分析的高分辨率7特斯拉尸检MRI的自动化深度学习分割

Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases.

作者信息

Khandelwal Pulkit, Duong Michael Tran, Sadaghiani Shokufeh, Lim Sydney, Denning Amanda E, Chung Eunice, Ravikumar Sadhana, Arezoumandan Sanaz, Peterson Claire, Bedard Madigan, Capp Noah, Ittyerah Ranjit, Migdal Elyse, Choi Grace, Kopp Emily, Loja Bridget, Hasan Eusha, Li Jiacheng, Bahena Alejandra, Prabhakaran Karthik, Mizsei Gabor, Gabrielyan Marianna, Schuck Theresa, Trotman Winifred, Robinson John, Ohm Daniel T, Lee Edward B, Trojanowski John Q, McMillan Corey, Grossman Murray, Irwin David J, Detre John A, Tisdall M Dylan, Das Sandhitsu R, Wisse Laura E M, Wolk David A, Yushkevich Paul A

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.

Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Imaging Neurosci (Camb). 2024 May 8;2:1-30. doi: 10.1162/imag_a_00171. eCollection 2024 May 1.

Abstract

MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm and 0.16 mm isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).

摘要

磁共振成像(MRI)能够以高分辨率检查脑解剖结构,并将病理测量与形态测量联系起来。然而,用于死后MRI脑图谱分析的自动分割方法尚未得到充分发展,主要原因是标记数据集的可用性有限,以及扫描仪硬件和采集协议的异质性。在这项工作中,我们展示了一个包含135个死后人类脑组织标本的高分辨率数据集,这些标本在7T全身MRI扫描仪上使用T2加权序列以各向同性0.3毫米的分辨率成像。我们开发了一个深度学习流程,通过对九种深度神经架构的性能进行基准测试来分割皮质幔,随后进行事后拓扑校正。我们通过与6个标本中的手动分割的重叠指标,以及从自动分割提取的皮质厚度测量值与36个标本中专家生成的参考测量值之间的类内相关性,来评估这个流程的可靠性。我们还分割了四个皮质下结构(尾状核、壳核、苍白球和丘脑)、白质高信号以及正常外观的白质,对准确性进行了有限的评估。我们展示了在不同标本的全脑半球以及在7T下以各向同性0.28毫米和0.16毫米的T2*加权快速低角度激发(FLASH)序列采集的未见过的图像上的泛化能力。我们报告了关键区域局部皮质厚度与体积测量之间的关联,以及在一组82例患有阿尔茨海默病(AD)连续体诊断的个体中的半定量神经病理学评分。我们的代码、Jupyter笔记本和容器化可执行文件可在(https://pulkit-khandelwal.github.io/exvivo-brain-upenn/)上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36e/12247589/4a338e52c81b/imag_a_00171_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验