Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Departments of Pathology, Stanford University, Stanford, CA, USA.
Nat Biotechnol. 2022 Mar;40(3):374-381. doi: 10.1038/s41587-021-01065-5. Epub 2021 Oct 21.
Multimodal measurements of single-cell profiles are proving increasingly useful for characterizing cell states and regulatory mechanisms. In the present study, we developed PHAGE-ATAC (Assay for Transposase-Accessible Chromatin), a massively parallel droplet-based method that uses phage displaying, engineered, camelid single-domain antibodies ('nanobodies') for simultaneous single-cell measurements of protein levels and chromatin accessibility profiles, and mitochondrial DNA-based clonal tracing. We use PHAGE-ATAC for multimodal analysis in primary human immune cells, sample multiplexing, intracellular protein analysis and the detection of SARS-CoV-2 spike protein in human cell populations. Finally, we construct a synthetic high-complexity phage library for selection of antigen-specific nanobodies that bind cells of particular molecular profiles, opening an avenue for protein detection, cell characterization and screening with single-cell genomics.
单细胞多模态测量正被证明对细胞状态和调控机制的描述越来越有用。在本研究中,我们开发了 PHAGE-ATAC(转座酶可及染色质分析),这是一种大规模并行的基于液滴的方法,它使用噬菌体展示、工程化的骆驼科单域抗体('纳米抗体'),可同时对单细胞的蛋白质水平和染色质可及性谱进行测量,并进行基于线粒体 DNA 的克隆追踪。我们使用 PHAGE-ATAC 对原代人免疫细胞进行多模态分析、样本多重分析、细胞内蛋白质分析和人细胞群体中 SARS-CoV-2 刺突蛋白的检测。最后,我们构建了一个合成的高复杂度噬菌体文库,用于选择结合特定分子谱细胞的抗原特异性纳米抗体,为蛋白质检测、细胞特征分析和单细胞基因组学筛选开辟了道路。