Moebel Emmanuel, Martinez-Sanchez Antonio, Lamm Lorenz, Righetto Ricardo D, Wietrzynski Wojciech, Albert Sahradha, Larivière Damien, Fourmentin Eric, Pfeffer Stefan, Ortiz Julio, Baumeister Wolfgang, Peng Tingying, Engel Benjamin D, Kervrann Charles
Serpico Project-Team, Centre Inria Rennes-Bretagne Atlantique and CNRS-UMR 144, Inria, CNRS, Institut Curie, PSL Research University, Campus Universitaire de Beaulieu, Rennes Cedex, France.
Department of Computer Science, Faculty of Sciences, University of Oviedo, Oviedo, Spain.
Nat Methods. 2021 Nov;18(11):1386-1394. doi: 10.1038/s41592-021-01275-4. Epub 2021 Oct 21.
Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.
低温电子断层扫描(cryo-ET)能够在纳米分辨率下呈现天然细胞内大分子的三维空间分布。然而,细胞断层图像中大分子的自动识别面临着噪声、重建伪影以及拥挤空间中众多分子种类的挑战。在此,我们展示了DeepFinder,这是一种使用人工神经网络同时定位多类大分子的计算程序。经过训练后,DeepFinder的推理阶段比模板匹配更快,并且在识别合成数据集和实验数据集中各种大小的大分子时,表现优于其他竞争性深度学习方法。在细胞低温电子断层扫描数据上,DeepFinder定位膜结合和胞质核糖体(约3.2 MDa)、1,5-二磷酸核酮糖羧化酶加氧酶(约560 kDa可溶性复合物)和光系统II(约550 kDa膜复合物)的准确性与专家监督的真实注释相当。因此,DeepFinder是一种用于细胞断层图像中广泛分子靶点半自动分析的有前景的算法。