Suppr超能文献

PickET:一种用于在冷冻电子断层扫描中定位大分子的无监督方法。

PickET: An unsupervised method for localizing macromolecules in cryo-electron tomograms.

作者信息

Arvindekar Shreyas, Golatkar Omkar, Viswanath Shruthi

机构信息

National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India 560065.

出版信息

bioRxiv. 2025 Aug 21:2025.08.20.671250. doi: 10.1101/2025.08.20.671250.

Abstract

Cryo-electron tomography (cryo-ET) datasets are rich sources of information capable of describing the localizations, structures, and interactions of macromolecules. However, most current methods for localizing particles in cryo-electron tomograms are limited to macromolecules with known structure, require extensive manual annotations, and/or are computationally expensive. Here, we present PickET, a method for localizing macromolecules in tomograms that does not rely on expert annotations and prior structures. Its performance is demonstrated on a diverse dataset comprising over a hundred tomograms from publicly available datasets, varying in sample types, sample preparation conditions, microscope hardware, and image processing workflows. We demonstrate that PickET can simultaneously localize macromolecules of various shapes, sizes, and abundance. The predicted particle localizations can be used for 3D classification and structural characterization. Our fully unsupervised approach is efficient and scalable, and enables high-throughput analysis of cryo-ET data.

摘要

冷冻电子断层扫描(cryo-ET)数据集是丰富的信息来源,能够描述大分子的定位、结构和相互作用。然而,目前大多数在冷冻电子断层图像中定位颗粒的方法仅限于具有已知结构的大分子,需要大量的人工注释,和/或计算成本高昂。在这里,我们提出了PickET,一种在断层图像中定位大分子的方法,该方法不依赖专家注释和先前的结构。我们在一个多样的数据集上展示了它的性能,该数据集包含来自公开可用数据集的一百多个断层图像,样本类型、样本制备条件、显微镜硬件和图像处理工作流程各不相同。我们证明PickET可以同时定位各种形状、大小和丰度的大分子。预测的颗粒定位可用于三维分类和结构表征。我们的完全无监督方法高效且可扩展,能够对冷冻电子断层扫描数据进行高通量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/976c/12393384/f0bfe27e727d/nihpp-2025.08.20.671250v1-f0001.jpg

本文引用的文献

1
Cryo-electron tomography: Challenges and computational strategies for particle picking.
Curr Opin Struct Biol. 2025 Aug;93:103113. doi: 10.1016/j.sbi.2025.103113. Epub 2025 Jul 9.
2
Template matching and machine learning for cryo-electron tomography.
Curr Opin Struct Biol. 2025 Aug;93:103058. doi: 10.1016/j.sbi.2025.103058. Epub 2025 May 14.
3
Frontiers in integrative structural modeling of macromolecular assemblies.
QRB Discov. 2025 Jan 22;6:e3. doi: 10.1017/qrd.2024.15. eCollection 2025.
4
Streamlining segmentation of cryo-electron tomography datasets with Ais.
Elife. 2024 Dec 20;13:RP98552. doi: 10.7554/eLife.98552.
5
A data portal for providing standardized annotations for cryo-electron tomography.
Nat Methods. 2024 Dec;21(12):2200-2202. doi: 10.1038/s41592-024-02477-2.
6
MiLoPYP: self-supervised molecular pattern mining and particle localization in situ.
Nat Methods. 2024 Oct;21(10):1863-1872. doi: 10.1038/s41592-024-02403-6. Epub 2024 Sep 9.
7
Accurate size-based protein localization from cryo-ET tomograms.
J Struct Biol X. 2024 Jun 26;10:100104. doi: 10.1016/j.yjsbx.2024.100104. eCollection 2024 Dec.
8
What shapes template-matching performance in cryogenic electron tomography in situ?
Acta Crystallogr D Struct Biol. 2024 Jun 1;80(Pt 6):410-420. doi: 10.1107/S2059798324004303. Epub 2024 May 28.
9
High-confidence 3D template matching for cryo-electron tomography.
Nat Commun. 2024 May 11;15(1):3992. doi: 10.1038/s41467-024-47839-8.
10
STOPGAP: an open-source package for template matching, subtomogram alignment and classification.
Acta Crystallogr D Struct Biol. 2024 May 1;80(Pt 5):336-349. doi: 10.1107/S205979832400295X. Epub 2024 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验