Suppr超能文献

切萨皮克湾项目建模系统:概述与未来发展建议

The Chesapeake Bay Program Modeling System: Overview and Recommendations for Future Development.

作者信息

Hood Raleigh R, Shenk Gary W, Dixon Rachel L, Smith Sean M C, Ball William P, Bash Jesse O, Batiuk Rich, Boomer Kathy, Brady Damian C, Cerco Carl, Claggett Peter, de Mutsert Kim, Easton Zachary M, Elmore Andrew J, Friedrichs Marjorie A M, Harris Lora A, Ihde Thomas F, Lacher Iara, Li Li, Linker Lewis C, Miller Andrew, Moriarty Julia, Noe Gregory B, Onyullo George, Rose Kenneth, Skalak Katie, Tian Richard, Veith Tamie L, Wainger Lisa, Weller Donald, Zhang Yinglong Joseph

机构信息

Horn Point Laboratory, University of Maryland Center for Environmental Science, P.O. Box 775, Cambridge, MD 21613, USA.

USGS Chesapeake Bay Program Office, 410 Severn Avenue, Suite 109, Annapolis, MD, 21403, USA.

出版信息

Ecol Modell. 2021 Sep 15;465:1-109635. doi: 10.1016/j.ecolmodel.2021.109635.

Abstract

The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed. Since its inception, the CBP Partnership has been developing, updating, and applying a complex linked modeling system of watershed, airshed, and estuary models as a planning tool to inform strategic management decisions and Bay restoration efforts. This paper provides a description of the 2017 CBP Modeling System and the higher trophic level models developed by the NOAA Chesapeake Bay Office, along with specific recommendations that emerged from a 2018 workshop designed to inform future model development. Recommendations highlight the need for simulation of watershed inputs, conditions, processes, and practices at higher resolution to provide improved information to guide local nutrient and sediment management plans. More explicit and extensive modeling of connectivity between watershed landforms and estuary sub-areas, estuarine hydrodynamics, watershed and estuarine water quality, the estuarine-watershed socioecological system, and living resources will be important to broaden and improve characterization of responses to targeted nutrient and sediment load reductions. Finally, the value and importance of maintaining effective collaborations among jurisdictional managers, scientists, modelers, support staff, and stakeholder communities is emphasized. An open collaborative and transparent process has been a key element of successes to date and is vitally important as the CBP Partnership moves forward with modeling system improvements that help stakeholders evolve new knowledge, improve management strategies, and better communicate outcomes.

摘要

切萨皮克湾是美国大陆最大、生产力最高且生物多样性最丰富的河口湾,为具有文化和经济重要性的物种提供了关键栖息地和自然资源。人口增长以及相关的开发活动和农业集约化带来的压力,导致过多的营养物质和沉积物进入该海湾,对海湾生态系统的健康及其提供的经济服务产生了负面影响。切萨皮克湾项目(CBP)是一个独特的项目,于1983年正式成立,是一个多方利益相关者的合作伙伴关系,旨在指导和促进切萨皮克湾及其流域的恢复。自成立以来,CBP合作伙伴关系一直在开发、更新和应用一个由流域、空气流域和河口模型组成的复杂关联建模系统,作为一种规划工具,为战略管理决策和海湾恢复工作提供信息。本文介绍了2017年CBP建模系统以及美国国家海洋和大气管理局切萨皮克湾办公室开发的更高营养级模型,同时还介绍了2018年一次研讨会提出的具体建议,该研讨会旨在为未来的模型开发提供信息。建议强调需要以更高分辨率模拟流域输入、条件、过程和实践,以提供更好的信息来指导地方营养物质和沉积物管理计划。对流域地貌与河口子区域之间的连通性、河口水动力、流域和河口水质、河口-流域社会生态系统以及生物资源进行更明确和广泛的建模,对于拓宽和改进对目标营养物质和沉积物负荷减少的响应特征至关重要。最后,强调了在各辖区管理人员、科学家、建模人员、支持人员和利益相关者社区之间保持有效合作的价值和重要性。一个开放、协作和透明的过程是迄今为止取得成功的关键要素,并且在CBP合作伙伴关系推进建模系统改进以帮助利益相关者发展新知识、改进管理策略并更好地传达成果时,至关重要。

相似文献

本文引用的文献

5
Effects of reduced shoreline erosion on Chesapeake Bay water clarity.减少海岸线侵蚀对切萨皮克湾水质清澈度的影响。
Sci Total Environ. 2021 May 15;769:145157. doi: 10.1016/j.scitotenv.2021.145157. Epub 2021 Jan 14.
6
Predicting algal blooms: Are we overlooking groundwater?预测藻类水华:我们是否忽视了地下水?
Sci Total Environ. 2021 May 15;769:144442. doi: 10.1016/j.scitotenv.2020.144442. Epub 2021 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验