Benoliel Tal, Gilboa Tal, Har-Shai Yahav Paz, Zelker Revital, Kreigsberg Bilha, Tsizin Evgeny, Arviv Oshrit, Ekstein Dana, Medvedovsky Mordekhay
Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel.
Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
Front Neurol. 2021 Oct 5;12:711378. doi: 10.3389/fneur.2021.711378. eCollection 2021.
Video-EEG monitoring (VEM) is imperative in seizure classification and presurgical assessment of epilepsy patients. Analysis of VEM is currently performed in most institutions using a freeform report, a time-consuming process resulting in a non-standardized report, limiting the use of this essential diagnostic tool. Herein we present a pilot feasibility study of our experience with "Digital Semiology" (DS), a novel seizure encoding software. It allows semiautomated annotation of the videos of suspected events from a predetermined, hierarchal set of options, with highly detailed semiologic descriptions, somatic localization, and timing. In addition, the software's semiologic extrapolation functions identify characteristics of focal seizures and PNES, sequences compatible with a Jacksonian march, and risk factors for SUDEP. Sixty episodes from a mixed adult and pediatric cohort from one level 4 epilepsy center VEM archives were analyzed using DS and the reports were compared with the standard freeform ones, written by the same epileptologists. The behavioral characteristics appearing in the DS and freeform reports overlapped by 78-80%. Encoding of one episode using DS required an average of 18 min 13 s (standard deviation: 14 min and 16 s). The focality function identified 19 out of 43 focal episodes, with a sensitivity of 45.45% (CI 30.39-61.15%) and specificity of 87.50% (CI 61.65-98.45%). The PNES function identified 6 of 12 PNES episodes, with a sensitivity of 50% (95% CI 21.09-78.91%) and specificity of 97.2 (95% CI 88.93-99.95%). Eleven events of GTCS triggered the SUDEP risk alert. Overall, these results show that video recordings of suspected seizures can be encoded using the DS software in a precise manner, offering the added benefit of semiologic alerts. The present study represents an important step toward the formation of an annotated video archive, to be used for machine learning purposes. This will further the goal of automated VEM analysis, ultimately contributing to wider utilization of VEM and therefore to the reduction of the treatment gap in epilepsy.
视频脑电图监测(VEM)对于癫痫患者的发作分类和术前评估至关重要。目前大多数机构对VEM的分析采用自由格式报告,这一过程耗时且导致报告不标准化,限制了这种重要诊断工具的使用。在此,我们展示了一项关于“数字符号学”(DS)的初步可行性研究,这是一种新型的发作编码软件。它允许从一组预先确定的、分层的选项中对疑似事件的视频进行半自动注释,并提供高度详细的符号学描述、躯体定位和时间信息。此外,该软件的符号学推断功能可识别局灶性发作和精神源性非癫痫性发作(PNES)的特征、与杰克逊癫痫进展相符的序列以及不明原因癫痫性猝死(SUDEP)的危险因素。使用DS对来自一个四级癫痫中心VEM档案的成人和儿童混合队列中的60个发作事件进行了分析,并将报告与由同一位癫痫专家撰写的标准自由格式报告进行了比较。DS报告和自由格式报告中出现的行为特征重叠率为78 - 80%。使用DS对一个发作事件进行编码平均需要18分13秒(标准差:14分16秒)。局灶性发作功能在43个局灶性发作事件中识别出19个,敏感性为45.45%(置信区间30.39 - 61.15%),特异性为87.50%(置信区间61.65 - 98.45%)。PNES功能在12个PNES发作事件中识别出6个,敏感性为50%(95%置信区间21.09 - 78.91%),特异性为97.2(95%置信区间88.93 - 99.95%)。11次全面性强直阵挛发作(GTCS)事件触发了SUDEP风险警报。总体而言,这些结果表明,疑似发作的视频记录可以使用DS软件进行精确编码,并提供符号学警报的额外益处。本研究朝着形成一个用于机器学习目的的注释视频档案迈出了重要一步。这将推动VEM自动化分析的目标,最终有助于更广泛地使用VEM,从而缩小癫痫治疗差距。