Suppr超能文献

使用四分量指数混合模型对癌症数据进行贝叶斯分析。

Bayesian Analysis of Cancer Data Using a 4-Component Exponential Mixture Model.

机构信息

Department of Mathematics &Statistics, International Islamic University, Islamabad, Pakistan.

Department of Mathematics and Statistics, PMAS University of Arid Agriculture, Rawalpindi, Pakistan.

出版信息

Comput Math Methods Med. 2021 Oct 12;2021:6289337. doi: 10.1155/2021/6289337. eCollection 2021.

Abstract

Cancer is among the major public health problems as well as a burden for Pakistan. About 148,000 new patients are diagnosed with cancer each year, and almost 100,000 patients die due to this fatal disease. Lung, breast, liver, cervical, blood/bone marrow, and oral cancers are the most common cancers in Pakistan. Perhaps smoking, physical inactivity, infections, exposure to toxins, and unhealthy diet are the main factors responsible for the spread of cancer. We preferred a novel four-component mixture model under Bayesian estimation to estimate the average number of incidences and death of both genders in different age groups. For this purpose, we considered 28 different kinds of cancers diagnosed in recent years. Data of registered patients all over Pakistan in the year 2012 were taken from GLOBOCAN. All the patients were divided into 4 age groups and also split based on genders to be applied to the proposed mixture model. Bayesian analysis is performed on the data using a four-component exponential mixture model. Estimators for mixture model parameters are derived under Bayesian procedures using three different priors and two loss functions. Simulation study and graphical representation for the estimates are also presented. It is noted from analysis of real data that the Bayes estimates under LINEX loss assuming Jeffreys' prior is more efficient for the no. of incidences in male and female. As far as no. of deaths are concerned again, LINEX loss assuming Jeffreys' prior gives better results for the male population, but for the female population, the best loss function is SELF assuming Jeffreys' prior.

摘要

癌症是巴基斯坦主要的公共卫生问题之一,也是一个负担。每年约有 14.8 万名新患者被诊断出患有癌症,几乎 10 万名患者因这种致命疾病而死亡。肺癌、乳腺癌、肝癌、宫颈癌、血液/骨髓癌和口腔癌是巴基斯坦最常见的癌症。也许吸烟、缺乏运动、感染、接触毒素和不健康的饮食是癌症传播的主要因素。我们更喜欢在贝叶斯估计下使用新型的四组件混合模型来估计不同年龄组男女的平均发病率和死亡率。为此,我们考虑了近年来诊断出的 28 种不同类型的癌症。2012 年从 GLOBOCAN 获得了巴基斯坦各地登记患者的数据。所有患者被分为 4 个年龄组,并根据性别进行细分,以应用于提出的混合模型。使用四组件指数混合模型对数据进行贝叶斯分析。使用三种不同的先验和两种损失函数,在贝叶斯程序下推导出混合模型参数的估计值。还展示了模拟研究和估计值的图形表示。从真实数据分析中可以看出,在 LINEX 损失下假设杰弗里先验的贝叶斯估计对于男性和女性的发病率更有效。就死亡人数而言,再次假设杰弗里先验的 LINEX 损失为男性人口提供了更好的结果,但对于女性人口,最佳损失函数是 SELF 假设杰弗里先验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be07/8526261/4fdbbcf39c24/CMMM2021-6289337.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验