Jiang Yi, Chen Dong, Chen Xin, Li Tangyi, Wei Guo-Wei, Pan Feng
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, PR China.
Department of Mathematics, Michigan State University, East Lansing, MI, USA.
NPJ Comput Mater. 2021;7. doi: 10.1038/s41524-021-00493-w. Epub 2021 Feb 5.
Accurate theoretical predictions of desired properties of materials play an important role in materials research and development. Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as those of crystalline compounds, a vital issue is how to construct low-dimensional representations for input crystal structures with chemical insights. In this work, we introduce an algebraic topology-based method, called atom-specific persistent homology (ASPH), as a unique representation of crystal structures. The ASPH can capture both pairwise and many-body interactions and reveal the topology-property relationship of a group of atoms at various scales. Combined with composition-based attributes, ASPH-based ML model provides a highly accurate prediction of the formation energy calculated by density functional theory (DFT). After training with more than 30,000 different structure types and compositions, our model achieves a mean absolute error of 61 meV/atom in cross-validation, which outperforms previous work such as Voronoi tessellations and Coulomb matrix method using the same ML algorithm and datasets. Our results indicate that the proposed topology-based method provides a powerful computational tool for predicting materials properties compared to previous works.
材料所需性能的准确理论预测在材料研发中起着重要作用。机器学习(ML)可以通过根据输入数据构建模型来加速材料设计。对于复杂数据集,如晶体化合物的数据集,一个关键问题是如何基于化学见解为输入晶体结构构建低维表示。在这项工作中,我们引入了一种基于代数拓扑的方法,称为原子特异性持久同调(ASPH),作为晶体结构的独特表示。ASPH可以捕捉成对和多体相互作用,并揭示不同尺度下一组原子的拓扑-性质关系。结合基于成分的属性,基于ASPH的ML模型对通过密度泛函理论(DFT)计算的形成能提供了高度准确的预测。在用超过30000种不同的结构类型和成分进行训练后,我们的模型在交叉验证中实现了61 meV/原子的平均绝对误差,这优于使用相同ML算法和数据集的先前工作,如Voronoi镶嵌和库仑矩阵方法。我们的结果表明,与先前的工作相比,所提出的基于拓扑的方法为预测材料性能提供了一个强大的计算工具。