Suppr超能文献

一种基于机器学习的拓扑量子材料分类器。

A machine learning based classifier for topological quantum materials.

作者信息

Rasul Ashiqur, Hossain Md Shafayat, Dastider Ankan Ghosh, Roy Himaddri, Hasan M Zahid, Khosru Quazi D M

机构信息

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.

Department of Physics, Princeton University, Princeton, NJ, 08544, USA.

出版信息

Sci Rep. 2024 Dec 30;14(1):31564. doi: 10.1038/s41598-024-68920-8.

Abstract

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models. Additionally, out-of-distribution and newly discovered topological materials can be classified using our method with high confidence. The incorporation of the graph neural network encodes the underlying relation between the atoms into the model based on their crystalline structures and thus proved to be an effective method to represent and process non-Euclidean data like molecules with a relatively shallow network. The persistent homology pipeline in the proposed neural network integrates a topological analysis of crystal structures into the deep learning model, enhancing both robustness and performance. Our classifier can serve as an efficacious tool for predicting the topological class, thereby enabling a high-throughput search for fascinating topological materials.

摘要

预测和发现具有所需特性的新材料是量子科学与技术研究的前沿领域。该领域的一个主要瓶颈是与从头计算中寻找新材料相关的计算资源和时间复杂性。在这项工作中,通过将持久同调与图神经网络相结合,提出了一种有效且稳健的基于深度学习的模型,该模型在对拓扑材料和非拓扑材料进行分类时,准确率达到 ,F1 分数达到 ,优于其他先进的分类器模型。此外,使用我们的方法可以高置信度地对分布外和新发现的拓扑材料进行分类。图神经网络的纳入基于原子的晶体结构将原子之间的潜在关系编码到模型中,因此被证明是一种用相对较浅的网络来表示和处理像分子这样的非欧几里得数据的有效方法。所提出的神经网络中的持久同调管道将晶体结构的拓扑分析集成到深度学习模型中,增强了鲁棒性和性能。我们的分类器可以作为预测拓扑类别的有效工具,从而实现对迷人拓扑材料的高通量搜索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验