Department of Electrical and Information Engineering, University of Nairobi, Nairobi 30197, Kenya.
Biomed Res Int. 2021 Oct 12;2021:5556941. doi: 10.1155/2021/5556941. eCollection 2021.
A new master-slave binary grey wolf optimizer (MSBGWO) is introduced. A master-slave learning scheme is introduced to the grey wolf optimizer (GWO) to improve its ability to explore and get better solutions in a search space. Five high-dimensional biomedical datasets are used to test the ability of MSBGWO in feature selection. The experimental results of MSBGWO are superior in terms of classification accuracy, precision, recall, -measure, and number of features selected when compared to those of the binary grey wolf optimizer version 2 (BGWO2), binary genetic algorithm (BGA), binary particle swarm optimization (BPSO), differential evolution (DE) algorithm, and sine-cosine algorithm (SCA).
引入了一种新的主从二进制灰狼优化器(MSBGWO)。在灰狼优化器(GWO)中引入了主从学习方案,以提高其在搜索空间中探索和获取更好解决方案的能力。使用五个高维生物医学数据集来测试 MSBGWO 在特征选择中的能力。与二进制灰狼优化器版本 2(BGWO2)、二进制遗传算法(BGA)、二进制粒子群优化算法(BPSO)、差分进化算法(DE)和正弦余弦算法(SCA)相比,MSBGWO 在分类准确性、精度、召回率、F1 测度和选择的特征数量方面的实验结果都更为优越。