Suppr超能文献

模糊策略灰狼优化器在复杂多模态优化问题中的应用。

Fuzzy Strategy Grey Wolf Optimizer for Complex Multimodal Optimization Problems.

机构信息

College of Computer and Electronic Information Engineering, Guangxi University, Nanning 530004, China.

出版信息

Sensors (Basel). 2022 Aug 25;22(17):6420. doi: 10.3390/s22176420.

Abstract

Traditional grey wolf optimizers (GWOs) have difficulty balancing convergence and diversity when used for multimodal optimization problems (MMOPs), resulting in low-quality solutions and slow convergence. To address these drawbacks of GWOs, a fuzzy strategy grey wolf optimizer (FSGWO) is proposed in this paper. Binary joint normal distribution is used as a fuzzy method to realize the adaptive adjustment of the control parameters of the FSGWO. Next, the fuzzy mutation operator and the fuzzy crossover operator are designed to generate new individuals based on the fuzzy control parameters. Moreover, a noninferior selection strategy is employed to update the grey wolf population, which makes the entire population available for estimating the location of the optimal solution. Finally, the FSGWO is verified on 30 test functions of IEEE CEC2014 and five engineering application problems. Comparing FSGWO with state-of-the-art competitive algorithms, the results show that FSGWO is superior. Specifically, for the 50D test functions of CEC2014, the average calculation accuracy of FSGWO is 33.63%, 46.45%, 62.94%, 64.99%, and 59.82% higher than those of the equilibrium optimizer algorithm, modified particle swarm optimization, original GWO, hybrid particle swarm optimization and GWO, and selective opposition-based GWO, respectively. For the 30D and 50D test functions of CEC2014, the results of the Wilcoxon signed-rank test show that FSGWO is better than the competitive algorithms.

摘要

传统灰狼优化器(GWOs)在用于多模态优化问题(MMOPs)时,难以平衡收敛性和多样性,导致得到的解决方案质量低且收敛速度慢。为了解决 GWOs 的这些缺点,本文提出了一种模糊策略灰狼优化器(FSGWO)。二进制联合正态分布被用作模糊方法,以实现 FSGWO 控制参数的自适应调整。接下来,设计了模糊变异算子和模糊交叉算子,基于模糊控制参数生成新个体。此外,采用非劣选择策略来更新灰狼种群,这使得整个种群都可以用来估计最优解的位置。最后,在 IEEE CEC2014 的 30 个测试函数和 5 个工程应用问题上验证了 FSGWO。将 FSGWO 与最先进的竞争算法进行比较,结果表明 FSGWO 具有优越性。具体来说,对于 CEC2014 的 50D 测试函数,FSGWO 的平均计算精度分别比均衡优化算法、改进粒子群优化算法、原始 GWO、混合粒子群优化和 GWO、选择性基于对立的 GWO 高 33.63%、46.45%、62.94%、64.99%和 59.82%。对于 CEC2014 的 30D 和 50D 测试函数,Wilcoxon 符号秩检验的结果表明,FSGWO 优于竞争算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/9459977/2e552ff9298f/sensors-22-06420-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验