School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China.
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):157-166. doi: 10.1007/s11548-021-02511-0. Epub 2021 Oct 22.
Image registration is a fundamental task in the area of image processing, and it is critical to many clinical applications, e.g., computer-assisted surgery. In this work, we attempt to design an effective framework that gains higher accuracy at a minimal cost of the invertibility of registration field.
A hierarchically aggregated transformation (HAT) module is proposed. Within each HAT module, we connect multiple convolutions in a hierarchical manner to capture the multi-scale context, enabling small and large displacements between a pair of images to be taken into account simultaneously during the registration process. Besides, an adaptive feature scaling (AFS) mechanism is presented to refine the multi-scale feature maps derived from the HAT module by rescaling channel-wise features in the global receptive field. Based on the HAT module and AFS mechanism, we establish an efficacious and efficient unsupervised deformable registration framework.
The devised framework is validated on the dataset of SCARED and MICCAI Instrument Segmentation and Tracking Challenge 2015, and the experimental results demonstrate that our method achieves better registration accuracy with fewer number of folding pixels than three widely used baseline approaches of SyN, NiftyReg and VoxelMorph.
We develop a novel method for unsupervised deformable image registration by incorporating the HAT module and AFS mechanism into the framework, which provides a new way to obtain a desirable registration field between a pair of images.
图像配准是图像处理领域的一项基本任务,对许多临床应用至关重要,例如计算机辅助手术。在这项工作中,我们试图设计一个有效的框架,在最小化配准场可逆性成本的情况下获得更高的精度。
提出了一种层次聚合变换(HAT)模块。在每个 HAT 模块中,我们以层次方式连接多个卷积,以捕获多尺度上下文,从而能够在配准过程中同时考虑一对图像之间的小位移和大位移。此外,提出了一种自适应特征缩放(AFS)机制,通过在全局感受野中按通道缩放特征来细化来自 HAT 模块的多尺度特征图。基于 HAT 模块和 AFS 机制,我们建立了一个有效且高效的无监督变形配准框架。
该框架在 SCARED 数据集和 MICCAI 仪器分割和跟踪挑战 2015 上进行了验证,实验结果表明,与广泛使用的 SyN、NiftyReg 和 VoxelMorph 三种基线方法相比,我们的方法具有更好的配准精度和更少的折叠像素数。
我们通过将 HAT 模块和 AFS 机制纳入框架,开发了一种新的无监督变形图像配准方法,为获得一对图像之间的理想配准场提供了一种新方法。