Suppr超能文献

基于深度注意力分支网络的皮肤病变分类。

Deep attention branch networks for skin lesion classification.

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China.

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.

出版信息

Comput Methods Programs Biomed. 2021 Nov;212:106447. doi: 10.1016/j.cmpb.2021.106447. Epub 2021 Oct 2.

Abstract

BACKGROUND AND OBJECTIVE

The skin lesion usually covers a small region of the dermoscopy image, and the lesions of different categories might own high similarities. Therefore, it is essential to design an elaborate network for accurate skin lesion classification, which can focus on semantically meaningful lesion parts. Although the Class Activation Mapping (CAM) shows good localization capability of highlighting the discriminative parts, it cannot be obtained in the forward propagation process.

METHODS

We propose a Deep Attention Branch Network (DABN) model, which introduces the attention branches to expand the conventional Deep Convolutional Neural Networks (DCNN). The attention branch is designed to obtain the CAM in the training stage, which is then utilized as an attention map to make the network focus on discriminative parts of skin lesions. DABN is applicable to multiple DCNN structures and can be trained in an end-to-end manner. Moreover, a novel Entropy-guided Loss Weighting (ELW) strategy is designed to counter class imbalance influence in the skin lesion datasets.

RESULTS

The proposed method achieves an Average Precision (AP) of 0.719 on the ISIC-2016 dataset and an average area under the ROC curve (AUC) of 0.922 on the ISIC-2017 dataset. Compared with other state-of-the-art methods, our method obtains better performance without external data and ensemble learning. Moreover, extensive experiments demonstrate that it can be applied to multi-class classification tasks and improves mean sensitivity by more than 2.6% in different DCNN structures.

CONCLUSIONS

The proposed method can adaptively focus on the discriminative regions of dermoscopy images and allows for effective training when facing class imbalance, leading to the performance improvement of skin lesion classification, which could also be applied to other clinical applications.

摘要

背景与目的

皮肤病变通常只覆盖皮肤镜图像的一小部分区域,且不同类别的病变可能具有高度相似性。因此,设计一个精心制作的网络来进行准确的皮肤病变分类至关重要,该网络可以专注于语义上有意义的病变部位。虽然 Class Activation Mapping (CAM) 具有突出有判别力部分的良好定位能力,但它不能在正向传播过程中获得。

方法

我们提出了一种 Deep Attention Branch Network (DABN) 模型,该模型引入了注意力分支来扩展传统的深度卷积神经网络 (DCNN)。注意力分支旨在在训练阶段获得 CAM,然后将其用作注意力图,使网络专注于皮肤病变的有判别力部分。DABN 适用于多种 DCNN 结构,可以端到端进行训练。此外,还设计了一种新颖的 Entropy-guided Loss Weighting (ELW) 策略,以应对皮肤病变数据集的类别不平衡影响。

结果

所提出的方法在 ISIC-2016 数据集上的平均精度 (AP) 为 0.719,在 ISIC-2017 数据集上的平均 AUC 为 0.922。与其他最先进的方法相比,我们的方法在不使用外部数据和集成学习的情况下获得了更好的性能。此外,广泛的实验表明,它可以应用于多类分类任务,并在不同的 DCNN 结构中提高平均敏感性超过 2.6%。

结论

所提出的方法可以自适应地关注皮肤镜图像的判别区域,并在面对类别不平衡时进行有效训练,从而提高皮肤病变分类的性能,这也可应用于其他临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验