Suppr超能文献

深度学习中,注意分支网络是否能有效对全景放射影像中的牙种植体进行分类?

Is attention branch network effective in classifying dental implants from panoramic radiograph images by deep learning?

机构信息

Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa, Japan.

Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

出版信息

PLoS One. 2022 Jul 27;17(7):e0269016. doi: 10.1371/journal.pone.0269016. eCollection 2022.

Abstract

Attention mechanism, which is a means of determining which part of the forced data is emphasized, has attracted attention in various fields of deep learning in recent years. The purpose of this study was to evaluate the performance of the attention branch network (ABN) for implant classification using convolutional neural networks (CNNs). The data consisted of 10191 dental implant images from 13 implant brands that cropped the site, including dental implants as pretreatment, from digital panoramic radiographs of patients who underwent surgery at Kagawa Prefectural Central Hospital between 2005 and 2021. ResNet 18, 50, and 152 were evaluated as CNN models that were compared with and without the ABN. We used accuracy, precision, recall, specificity, F1 score, and area under the receiver operating characteristics curve as performance metrics. We also performed statistical and effect size evaluations of the 30-time performance metrics of the simple CNNs and the ABN model. ResNet18 with ABN significantly improved the dental implant classification performance for all the performance metrics. Effect sizes were equivalent to "Huge" for all performance metrics. In contrast, the classification performance of ResNet50 and 152 deteriorated by adding the attention mechanism. ResNet18 showed considerably high compatibility with the ABN model in dental implant classification (AUC = 0.9993) despite the small number of parameters. The limitation of this study is that only ResNet was verified as a CNN; further studies are required for other CNN models.

摘要

注意力机制是一种确定强制数据的哪一部分需要被强调的方法,近年来在深度学习的各个领域引起了关注。本研究旨在评估基于卷积神经网络(CNN)的注意力分支网络(ABN)在种植体分类中的性能。该数据由来自 13 个种植体品牌的 10191 个牙科种植体图像组成,这些图像是从 2005 年至 2021 年在香川县立中央医院接受手术的患者的数字全景放射片中裁剪出种植部位后获得的。作为 CNN 模型,我们评估了 ResNet 18、50 和 152,比较了有无 ABN 的情况。我们使用准确性、精度、召回率、特异性、F1 分数和接收器操作特性曲线下的面积作为性能指标。我们还对简单 CNN 和 ABN 模型的 30 次性能指标进行了统计和效应量评估。带有 ABN 的 ResNet18 显著提高了所有性能指标的牙科种植体分类性能。效应量对于所有性能指标均相当于“巨大”。相比之下,添加注意力机制后,ResNet50 和 152 的分类性能恶化。尽管参数数量较少,但 ResNet18 与 ABN 模型在牙科种植体分类中表现出相当高的兼容性(AUC=0.9993)。本研究的局限性在于仅验证了 ResNet 作为 CNN;需要进一步研究其他 CNN 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddcd/9328496/e6411e3d75f9/pone.0269016.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验