Suppr超能文献

基于集成深度卷积网络的多皮肤损伤诊断,用于分割和分类。

Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.

机构信息

Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.

Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.

出版信息

Comput Methods Programs Biomed. 2020 Jul;190:105351. doi: 10.1016/j.cmpb.2020.105351. Epub 2020 Jan 23.

Abstract

BACKGROUND AND OBJECTIVE

Computer automated diagnosis of various skin lesions through medical dermoscopy images remains a challenging task.

METHODS

In this work, we propose an integrated diagnostic framework that combines a skin lesion boundary segmentation stage and a multiple skin lesions classification stage. Firstly, we segment the skin lesion boundaries from the entire dermoscopy images using deep learning full resolution convolutional network (FrCN). Then, a convolutional neural network classifier (i.e., Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201) is applied on the segmented skin lesions for classification. The former stage is a critical prerequisite step for skin lesion diagnosis since it extracts prominent features of various types of skin lesions. A promising classifier is selected by testing well-established classification convolutional neural networks. The proposed integrated deep learning model has been evaluated using three independent datasets (i.e., International Skin Imaging Collaboration (ISIC) 2016, 2017, and 2018, which contain two, three, and seven types of skin lesions, respectively) with proper balancing, segmentation, and augmentation.

RESULTS

In the integrated diagnostic system, segmented lesions improve the classification performance of Inception-ResNet-v2 by 2.72% and 4.71% in terms of the F1-score for benign and malignant cases of the ISIC 2016 test dataset, respectively. The classifiers of Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 exhibit their capability with overall weighted prediction accuracies of 77.04%, 79.95%, 81.79%, and 81.27% for two classes of ISIC 2016, 81.29%, 81.57%, 81.34%, and 73.44% for three classes of ISIC 2017, and 88.05%, 89.28%, 87.74%, and 88.70% for seven classes of ISIC 2018, respectively, demonstrating the superior performance of ResNet-50.

CONCLUSIONS

The proposed integrated diagnostic networks could be used to support and aid dermatologists for further improvement in skin cancer diagnosis.

摘要

背景与目的

通过医学皮肤镜图像对各种皮肤病变进行计算机自动诊断仍然是一项具有挑战性的任务。

方法

在这项工作中,我们提出了一个集成诊断框架,该框架结合了皮肤病变边界分割阶段和多个皮肤病变分类阶段。首先,我们使用深度学习全分辨率卷积网络(FrCN)从整个皮肤镜图像中分割皮肤病变边界。然后,将卷积神经网络分类器(即 Inception-v3、ResNet-50、Inception-ResNet-v2 和 DenseNet-201)应用于分割的皮肤病变进行分类。前一阶段是皮肤病变诊断的关键前提步骤,因为它提取了各种类型皮肤病变的突出特征。通过测试成熟的分类卷积神经网络选择了一个有前途的分类器。该集成深度学习模型已经使用三个独立数据集(即国际皮肤成像协作(ISIC)2016、2017 和 2018,分别包含两种、三种和七种皮肤病变)进行了评估,这些数据集经过了适当的平衡、分割和扩充。

结果

在集成诊断系统中,分割病变将 Inception-ResNet-v2 的分类性能提高了 2.72%和 4.71%,分别针对 ISIC 2016 测试数据集良性和恶性病例的 F1 分数。Inception-v3、ResNet-50、Inception-ResNet-v2 和 DenseNet-201 的分类器分别以 77.04%、79.95%、81.79%和 81.27%的总体加权预测准确率显示了它们的能力,用于 ISIC 2016 的两个类别,81.29%、81.57%、81.34%和 73.44%用于 ISIC 2017 的三个类别,88.05%、89.28%、87.74%和 88.70%用于 ISIC 2018 的七个类别,证明了 ResNet-50 的卓越性能。

结论

所提出的集成诊断网络可用于支持和辅助皮肤科医生,以进一步提高皮肤癌诊断水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验