Suppr超能文献

基于 GAN 和基于模糊秩的 CNN 模型集成的皮肤镜病变分类。

Dermoscopy lesion classification based on GANs and a fuzzy rank-based ensemble of CNN models.

机构信息

School of Information, Yunnan University, Kunming 650504, People's Republic of China.

Journal of Yunnan University Natural Science Edition, Yunnan University, Kunming 650504, People's Republic of China.

出版信息

Phys Med Biol. 2022 Sep 8;67(18). doi: 10.1088/1361-6560/ac8b60.

Abstract

. Skin lesion classification by using deep learning technologies is still a considerable challenge due to high similarity among classes and large intraclass differences, serious class imbalance in data, and poor classification accuracy with low robustness.. To address these issues, a two-stage framework for dermoscopy lesion classification using adversarial training and a fuzzy rank-based ensemble of multilayer feature fusion convolutional neural network (CNN) models is proposed. In the first stage, dermoscopy dataset augmentation based on generative adversarial networks is proposed to obtain realistic dermoscopy lesion images, enabling significant improvement for balancing the number of lesions in each class. In the second stage, a fuzzy rank-based ensemble of multilayer feature fusion CNN models is proposed to classify skin lesions. In addition, an efficient channel integrating spatial attention module, in which a novel dilated pyramid pooling structure is designed to extract multiscale features from an enlarged receptive field and filter meaningful information of the initial features. Combining the cross-entropy loss function with the focal loss function, a novel united loss function is designed to reduce the intraclass sample distance and to focus on difficult and error-prone samples to improve the recognition accuracy of the proposed model.. In this paper, the common dataset (HAM10000) is selected to conduct simulation experiments to evaluate and verify the effectiveness of the proposed method. The subjective and objective experimental results demonstrate that the proposed method is superior over the state-of-the-art methods for skin lesion classification due to its higher accuracy, specificity and robustness.. The proposed method effectively improves the classification performance of the model for skin diseases, which will help doctors make accurate and efficient diagnoses, reduce the incidence rate and improve the survival rates of patients.

摘要

. 由于类别之间的高度相似性、类内差异较大、数据严重不平衡以及分类精度低、鲁棒性差等问题,利用深度学习技术对皮肤损伤进行分类仍然是一个相当大的挑战。为了解决这些问题,提出了一种基于对抗训练和模糊排序的多层特征融合卷积神经网络(CNN)模型集成的皮肤镜损伤分类两阶段框架。在第一阶段,提出了基于生成对抗网络的皮肤镜数据集扩充方法,以获得真实的皮肤镜损伤图像,从而显著改善每个类别中病变数量的平衡。在第二阶段,提出了一种基于模糊排序的多层特征融合 CNN 模型集成来对皮肤病变进行分类。此外,还提出了一种有效的通道集成空间注意模块,其中设计了一种新颖的扩张金字塔池化结构,从扩大的感受野中提取多尺度特征,并过滤初始特征的有意义信息。通过将交叉熵损失函数与焦点损失函数相结合,设计了一种新的联合损失函数,以减少类内样本距离,并关注困难和易错样本,从而提高所提出模型的识别精度。在本文中,选择了常见的数据集(HAM10000)进行仿真实验,以评估和验证所提出方法的有效性。主观和客观实验结果表明,与现有的皮肤病变分类方法相比,该方法具有更高的准确性、特异性和鲁棒性,因此更具优势。该方法有效地提高了模型对皮肤疾病的分类性能,这将有助于医生进行准确和高效的诊断,降低发病率,提高患者的生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验