McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Dept. of Neuroscience, Erasmus University Medical Center, Rotterdam, 3015, CN, the Netherlands.
Curr Opin Neurobiol. 2021 Oct;70:121-129. doi: 10.1016/j.conb.2021.09.008. Epub 2021 Oct 19.
Bayesian inference has emerged as a general framework that captures how organisms make decisions under uncertainty. Recent experimental findings reveal disparate mechanisms for how the brain generates behaviors predicted by normative Bayesian theories. Here, we identify two broad classes of neural implementations for Bayesian inference: a modular class, where each probabilistic component of Bayesian computation is independently encoded and a transform class, where uncertain measurements are converted to Bayesian estimates through latent processes. Many recent experimental neuroscience findings studying probabilistic inference broadly fall into these classes. We identify potential avenues for synthesis across these two classes and the disparities that, at present, cannot be reconciled. We conclude that to distinguish among implementation hypotheses for Bayesian inference, we require greater engagement among theoretical and experimental neuroscientists in an effort that spans different scales of analysis, circuits, tasks, and species.
贝叶斯推理已成为一个通用框架,用于捕捉生物在不确定条件下做出决策的方式。最近的实验结果揭示了大脑产生规范性贝叶斯理论预测行为的不同机制。在这里,我们确定了两种用于贝叶斯推理的广泛的神经实现类别:一类是模块化的,其中贝叶斯计算的每个概率分量都是独立编码的,另一类是变换类,其中不确定的测量值通过潜在过程转换为贝叶斯估计。最近许多研究概率推理的实验神经科学研究发现大致属于这两类。我们确定了在这两个类别之间进行综合的潜在途径,以及目前无法调和的差异。我们的结论是,要区分贝叶斯推理的实现假设,我们需要理论和实验神经科学家之间进行更大的合作,努力跨越不同的分析尺度、回路、任务和物种。