Suppr超能文献

中尺度模拟预测了协同小脑可塑性在经典眨眼条件反射中的作用。

Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning.

机构信息

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy.

出版信息

PLoS Comput Biol. 2024 Apr 4;20(4):e1011277. doi: 10.1371/journal.pcbi.1011277. eCollection 2024 Apr.

Abstract

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.

摘要

根据 Albus 和 Ito 的运动学习理论,平行纤维到浦肯野细胞突触(pf-PC)的突触抑制是在 climbing 纤维控制下感知运动关联学习的主要基质。然而,最近的实验证据挑战了小脑学习的这种相对垄断观点。双向可塑性似乎对学习至关重要,其中不同的微区可以经历突触强度的相反变化(例如,下行微区更可能是抑制,上行微区更可能是增强),并且已经确定了多种形式的可塑性,分布在不同的小脑回路突触上。在这里,我们使用嵌入下行和上行模块的高级尖峰小脑模型模拟了经典眨眼条件反射(CEBC),这些模块受多种可塑性规则的支配。模拟表明,突触可塑性调节了精确尖峰模式在小脑皮层和小脑核中的传播级联。pf-PC 突触和分子层中间神经元(MLIs)的突触的可塑性支持 CEBC,但只有同时关闭这两个可塑性位点才能显著损害学习。通过差异地利用 climbing 纤维信息和相关形式的突触可塑性,两个微区都有助于产生定时的条件反应,但下行模块在这个过程中起着主要作用。我们的模拟结果与突变小鼠的行为和电生理表型密切一致,这些突变小鼠遭受特定于细胞的突变,影响它们的 PC 和/或 MLI 突触的处理。我们的数据强调,分布在小脑中的双向可塑性规则的协同作用可以促进自适应联想行为在高时空分辨率下的微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc5e/11060558/79bec7e8f553/pcbi.1011277.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验