Suppr超能文献

CAMAP:人工神经网络揭示了密码子排列在调节 MHC-I 肽呈递中的作用。

CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation.

机构信息

Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.

Department of Biochemistry, Université de Montréal, Montréal, Canada.

出版信息

PLoS Comput Biol. 2021 Oct 22;17(10):e1009482. doi: 10.1371/journal.pcbi.1009482. eCollection 2021 Oct.

Abstract

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.

摘要

MHC-I 相关肽(MAPs)在 CD8 T 细胞清除病毒感染和肿瘤细胞中起着核心作用。然而,准确预测 MAP 库仍然很困难,因为只有转录组的一部分产生 MAPs。在这项研究中,我们研究了密码子排列(使用和位置)是否调节 MAP 的生物发生。我们开发了一种称为密码子排列 MAP 预测器(CAMAP)的人工神经网络,仅从 MAP 编码密码子(MCC)侧翼的 mRNA 序列预测 MAP 呈递,而不考虑 MCC 本身。与反映氨基酸使用情况的随机化密码子序列相比,使用原始密码子序列时,CAMAP 的预测准确性显著提高。此外,预测与 mRNA 表达和 MAP 与 MHC-I 分子的结合亲和力无关,并应用于几种细胞类型和物种。将 MAP 配体评分、转录表达水平和 CAMAP 评分相结合,特别有助于提高 MAP 预测的准确性。通过体外测定,我们表明,改变 MCC 侧翼区域的同义密码子(不改变氨基酸序列)会导致细胞表面 MAP 呈递的显著调节。总之,我们的研究结果证明了密码子排列在调节 MAP 呈递中的作用,并支持在预测算法中整合翻译和翻译后事件,以改善免疫肽组的建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8008/8577786/13b8acb0f8d4/pcbi.1009482.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验