Zhang Yibo, Li Ming, Shen Hui, Hu Dewen
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.
Brain Sci. 2021 Sep 24;11(10):1266. doi: 10.3390/brainsci11101266.
Functional connectivity, representing a statistical coupling relationship between different brain regions or electrodes, is an influential concept in clinical medicine and cognitive neuroscience. Electroencephalography-derived functional connectivity (EEG-FC) provides relevant characteristic information about individual differences in cognitive tasks and personality traits. However, it remains unclear whether these individual-dependent EEG-FCs remain relatively permanent across long-term sessions. This manuscript utilizes machine learning algorithms to explore the individual specificity and permanence of resting-state EEG connectivity patterns. We performed six recordings at different intervals during a six-month period to examine the variation and permanence of resting-state EEG-FC over a long period. The results indicated that the EEG-FC networks are quite subject-specific with a high-precision identification accuracy of greater than 90%. Meanwhile, the individual specificity remained stable and only varied slightly after six months. Furthermore, the specificity is mainly derived from the internal connectivity of the frontal lobe. Our work demonstrates the existence of specific and permanent EEG-FC patterns in the brain, providing potential information for biometric applications.
功能连接性代表不同脑区或电极之间的统计耦合关系,是临床医学和认知神经科学中的一个有影响力的概念。脑电图衍生的功能连接性(EEG-FC)提供了关于认知任务和人格特质个体差异的相关特征信息。然而,尚不清楚这些个体依赖的EEG-FC在长期会话中是否保持相对稳定。本手稿利用机器学习算法来探索静息态脑电图连接模式的个体特异性和稳定性。我们在六个月期间以不同间隔进行了六次记录,以检查长期静息态EEG-FC的变化和稳定性。结果表明,EEG-FC网络具有很强的个体特异性,高精度识别准确率大于90%。同时,个体特异性保持稳定,六个月后仅略有变化。此外,特异性主要来自额叶的内部连接。我们的工作证明了大脑中存在特定且稳定的EEG-FC模式,为生物识别应用提供了潜在信息。