Suppr超能文献

基于静息态功能磁共振成像的动态条件相关分析揭示背侧和腹侧感觉运动网络之间的动态功能连接状态。

Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

机构信息

1 University of Ottawa Faculty of Medicine , Ottawa, Canada .

2 Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Heath , Baltimore, Maryland.

出版信息

Brain Connect. 2017 Dec;7(10):635-642. doi: 10.1089/brain.2017.0533.

Abstract

Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

摘要

静息态功能磁共振成像(rs-fMRI)中的功能连接自 Biswal 等人最初的发现以来受到了广泛关注。传统的网络相关度量标准假设大脑中的功能连接随时间保持稳定。然而,最近的研究表明,功能网络之间以及内部的功能连接存在稳健的时间波动,这对这一假设提出了挑战。在这项研究中,通过将动态条件相关模型应用于 20 名健康受试者的 rs-fMRI 数据,研究了背侧和腹侧感觉运动网络之间的这些动态相关差异。k-均值聚类用于确定所有受试者感觉运动系统的离散连接状态(k=10)的最佳数量。我们的分析证实了背侧和腹侧网络之间动态相关性的差异,腹侧运动网络中的连接最高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验