Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba 13400-918, Brazil.
Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA.
Genes (Basel). 2021 Sep 27;12(10):1517. doi: 10.3390/genes12101517.
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the (wheat) and (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
植物细胞遗传学研究为减数分裂过程中的染色体行为提供了重要知识,有助于我们理解这一复杂过程。在这篇综述中,我们详细描述了自倍体和异源多倍体从前期 I 开始到配对、重组和二价体形成的减数分裂过程,重点介绍了近年来关于特定蛋白质的遗传控制和作用模式的发现,这些蛋白质导致多倍体物种中出现类似二倍体的减数分裂行为。在新形成的多倍体的减数分裂过程中,相关染色体(自倍体中同源;异源多倍体中同源和同系)可以在称为多价体的复杂结构中结合。当多个染色体同时配对、联会和重组时,就会发生这些结构。我们讨论了交叉频率在防止多价体形成和促进正常减数分裂方面的有效性。同源重组尤其可以产生新的基因(基因座)组合和表型,但它可能会使核型不稳定,导致异常减数分裂行为,降低生育能力。在作物物种中,了解控制配对和重组的因素有可能为植物育种者提供资源,以更充分地利用数量和结构上可用的染色体变异。我们专注于小麦和油菜籽,因为在这个主题上有大量的阐明研究,包括 (小麦)和 (油菜籽)基因座的分子特征,这些基因座已知在调节减数分裂中起着关键作用。最后,我们利用染色体配对和重组对多倍体遗传图谱构建的影响,突出了两个复杂基因组的案例研究:(i)现代甘蔗,其人工基因组包含两个亚基因组,其中一些具有重组染色体;(ii)六倍体甘薯,一种自然发生的多倍体。最近包含等位基因剂量信息提高了多倍体中的连锁估计,允许构建多基因座遗传图谱。