Suppr超能文献

端粒样重复序列侧翼序列由逆转录酶 RNA 序列反转录而来,该 RNA 插入脊椎动物基因组进化过程中的 DNA 双链断裂位点。

Telomeric-Like Repeats Flanked by Sequences Retrotranscribed from the Telomerase RNA Inserted at DNA Double-Strand Break Sites during Vertebrate Genome Evolution.

机构信息

Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.

出版信息

Int J Mol Sci. 2021 Oct 13;22(20):11048. doi: 10.3390/ijms222011048.

Abstract

Interstitial telomeric sequences (ITSs) are stretches of telomeric-like repeats located at internal chromosomal sites. We previously demonstrated that ITSs have been inserted during the repair of DNA double-strand breaks in the course of evolution and that some rodent ITSs, called TERC-ITSs, are flanked by fragments retrotranscribed from the telomerase RNA component (TERC). In this work, we carried out an extensive search of TERC-ITSs in 30 vertebrate genomes and identified 41 such loci in 22 species, including in humans and other primates. The fragment retrotranscribed from the TERC RNA varies in different lineages and its sequence seems to be related to the organization of TERC. Through comparative analysis of TERC-ITSs with orthologous empty loci, we demonstrated that, at each locus, the TERC-like sequence and the ITS have been inserted in one step in the course of evolution. Our findings suggest that telomerase participated in a peculiar pathway of DNA double-strand break repair involving retrotranscription of its RNA component and that this mechanism may be active in all vertebrate species. These results add new evidence to the hypothesis that RNA-templated DNA repair mechanisms are active in vertebrate cells.

摘要

端粒间序列(ITSs)是位于内部染色体位置的类似于端粒的重复序列。我们之前证明,ITSs 是在进化过程中 DNA 双链断裂修复过程中插入的,一些啮齿动物的 ITSs,称为 TERC-ITSs,其侧翼是由端粒酶 RNA 成分(TERC)逆转录的片段。在这项工作中,我们在 30 种脊椎动物基因组中进行了广泛的 TERC-ITSs 搜索,在 22 个物种中鉴定出 41 个这样的基因座,包括人类和其他灵长类动物。从 TERC RNA 逆转录的片段在不同的谱系中变化,其序列似乎与 TERC 的组织有关。通过对 TERC-ITSs 与同源空基因座的比较分析,我们证明,在每个基因座上,TERC 样序列和 ITS 是在进化过程中一步插入的。我们的发现表明,端粒酶参与了一种特殊的 DNA 双链断裂修复途径,涉及其 RNA 成分的逆转录,并且这种机制可能在所有脊椎动物物种中都活跃。这些结果为 RNA 模板化 DNA 修复机制在脊椎动物细胞中活跃的假说提供了新的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f4c/8537989/382c33f3de1d/ijms-22-11048-g001.jpg

相似文献

3
Telomeric repeats far from the ends: mechanisms of origin and role in evolution.
Cytogenet Genome Res. 2008;122(3-4):219-28. doi: 10.1159/000167807. Epub 2009 Jan 30.
4
Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective.
Int J Mol Sci. 2020 Apr 18;21(8):2838. doi: 10.3390/ijms21082838.
5
Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution.
Mutat Res Rev Mutat Res. 2017 Jul;773:51-65. doi: 10.1016/j.mrrev.2017.04.002. Epub 2017 Apr 22.
6
Insertion of telomeric repeats at intrachromosomal break sites during primate evolution.
Genome Res. 2004 Sep;14(9):1704-10. doi: 10.1101/gr.2778904. Epub 2004 Aug 12.
7
Endings in the middle: current knowledge of interstitial telomeric sequences.
Mutat Res. 2008 Jan-Feb;658(1-2):95-110. doi: 10.1016/j.mrrev.2007.08.006. Epub 2007 Sep 7.
9
Secondary structure of vertebrate telomerase RNA.
Cell. 2000 Mar 3;100(5):503-14. doi: 10.1016/s0092-8674(00)80687-x.
10
Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts.
PLoS One. 2013;8(3):e58661. doi: 10.1371/journal.pone.0058661. Epub 2013 Mar 14.

引用本文的文献

1
CENP-A and centromere evolution in equids.
Chromosome Res. 2025 Jun 30;33(1):13. doi: 10.1007/s10577-025-09773-3.
2
Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex.
Cell Biosci. 2025 Mar 1;15(1):30. doi: 10.1186/s13578-025-01367-0.
3
Molecular Dynamics and Evolution of Centromeres in the Genus Equus.
Int J Mol Sci. 2022 Apr 10;23(8):4183. doi: 10.3390/ijms23084183.

本文引用的文献

1
The Intra- and Extra-Telomeric Role of TRF2 in the DNA Damage Response.
Int J Mol Sci. 2021 Sep 14;22(18):9900. doi: 10.3390/ijms22189900.
2
Long noncoding RNAs in head and neck squamous cell carcinoma: biological functions and mechanisms.
Mol Biol Rep. 2020 Oct;47(10):8075-8090. doi: 10.1007/s11033-020-05777-w. Epub 2020 Sep 10.
3
Monophyletic Origin and Divergent Evolution of Animal Telomerase RNA.
Mol Biol Evol. 2021 Jan 4;38(1):215-228. doi: 10.1093/molbev/msaa203.
4
Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective.
Int J Mol Sci. 2020 Apr 18;21(8):2838. doi: 10.3390/ijms21082838.
5
Chromosome spreading of the (TTAGGG)n repeats in the Miranda-Ribeiro, 1937 (Pipidae, Anura) karyotype.
Comp Cytogenet. 2019 Oct 14;13(3):297-309. doi: 10.3897/CompCytogen.v13i3.35524. eCollection 2019.
6
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability.
Cells. 2019 Mar 15;8(3):246. doi: 10.3390/cells8030246.
7
AGO2 promotes telomerase activity and interaction between the telomerase components TERT and TERC.
EMBO Rep. 2019 Feb;20(2). doi: 10.15252/embr.201845969. Epub 2018 Dec 27.
8
Shelterin-Mediated Telomere Protection.
Annu Rev Genet. 2018 Nov 23;52:223-247. doi: 10.1146/annurev-genet-032918-021921. Epub 2018 Sep 12.
9
Mammalian transposable elements and their impacts on genome evolution.
Chromosome Res. 2018 Mar;26(1-2):25-43. doi: 10.1007/s10577-017-9570-z. Epub 2018 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验