Suppr超能文献

通过图形轨迹比较识别新冠病毒病数据中的错误:一项跨国分析

Graphical Trajectory Comparison to Identify Errors in Data of COVID-19: A Cross-Country Analysis.

作者信息

Yao Lan, Dong Wei, Wan Jim Y, Howard Scott C, Li Minghui, Graff Joyce Carolyn

机构信息

Health Outcomes and Policy Research, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

出版信息

J Pers Med. 2021 Sep 25;11(10):955. doi: 10.3390/jpm11100955.

Abstract

Data from the early stage of a novel infectious disease outbreak provide vital information in risk assessment, prediction, and precise disease management. Since the first reported case of COVID-19, the pattern of the novel coronavirus transmission in Wuhan has become the interest of researchers in epidemiology and public health. To thoroughly map the mechanism of viral spreading, we used the patterns of data at the early onset of COVID-19 from seven countries to estimate the time lag between peak days of cases and deaths. This study compared these data with those of Wuhan and estimated the natural history of disease across the infected population and the time lag. The findings suggest that comparative analyses of data from different regions and countries reveal the differences between peaks of cases and deaths caused by COVID-19 and the incomplete and underestimated cases in Wuhan. Different countries may show different patterns of cases peak days, deaths peak days, and peak periods. Error in the early COVID-19 statistics in Brazil was identified. This study provides sound evidence for policymakers to understand the local circumstances in diagnosing the health of a population and propose precise and timely public health interventions to control and prevent infectious diseases.

摘要

新型传染病爆发早期的数据在风险评估、预测及精准疾病管理方面提供了至关重要的信息。自首次报告新型冠状病毒肺炎(COVID-19)病例以来,新型冠状病毒在武汉的传播模式便成为了流行病学和公共卫生领域研究人员关注的焦点。为全面梳理病毒传播机制,我们利用来自七个国家的COVID-19早期发病数据模式,估算病例峰值日与死亡峰值日之间的时间间隔。本研究将这些数据与武汉的数据进行比较,估算了整个人口感染过程中疾病的自然史及时间间隔。研究结果表明,对不同地区和国家的数据进行比较分析,揭示了COVID-19导致的病例峰值和死亡峰值之间的差异,以及武汉存在病例报告不完整和被低估的情况。不同国家可能呈现出不同的病例峰值日、死亡峰值日及高峰期模式。研究还发现了巴西早期COVID-19统计数据存在的误差。本研究为政策制定者了解当地人群健康诊断情况、提出精准及时的公共卫生干预措施以控制和预防传染病提供了有力证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e8/8537769/7385c2ac5b1d/jpm-11-00955-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验