Suppr超能文献

通过新型受体生长抑素图像处理量化提高个性化神经内分泌肿瘤的诊断预测能力。

Improved Personalised Neuroendocrine Tumours' Diagnosis Predictive Power by New Receptor Somatostatin Image Processing Quantification.

作者信息

Stolniceanu Cati Raluca, Moscalu Mihaela, Azoicai Doina, Tamba Bogdan, Volovat Constantin, Grierosu Irena, Ionescu Teodor, Jalloul Wael, Ghizdovat Vlad, Gherasim Roxana, Volovat Simona, Wang Feng, Fu Jingjing, Moscalu Roxana, Matovic Milovan, Stefanescu Cipriana

机构信息

Department of Biophysics and Medical Physics-Nuclear Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.

Department of Preventive Medicine and Interdisciplinarity, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.

出版信息

J Pers Med. 2021 Oct 17;11(10):1042. doi: 10.3390/jpm11101042.

Abstract

Although neuroendocrine tumours (NETs) are intensively studied, their diagnosis and consequently personalised therapy management is still puzzling due to their tumoral heterogeneity. In their theragnosis algorithm, receptor somatostatin scintigraphy takes the central place, the diagnosis receptor somatostatin analogue (RSA) choice depending on laboratory experience and accessibility. However, in all cases, the results depend decisively on correct radiotracer tumoral uptake quantification, where unfortunately there are still unrevealed clues and lack of standardization. We propose an improved method to quantify the biodistribution of gamma-emitting RSA, using tissular corrected uptake indices. We conducted a bi-centric retrospective study on 101 patients with different types of NETs. Three uptake indices obtained after applying new corrections to areas of interest drawn for the tumour and for three reference organs (liver, spleen and lung) were statistically analysed. For the corrected pathological uptake indices, the results showed a significant decrease in the error of estimating the occurrence of errors and an increase in the diagnostic predictive power for NETs, especially in the case of lung-referring corrected index. In conclusion, these results support the importance of corrected uptake indices use in the analysis of TcRSA biodistribution for a better personalised diagnostic accuracy of NETs patients.

摘要

尽管神经内分泌肿瘤(NETs)得到了深入研究,但由于其肿瘤异质性,它们的诊断以及随之而来的个性化治疗管理仍然令人困惑。在其诊疗算法中,受体生长抑素闪烁扫描占据核心地位,诊断性受体生长抑素类似物(RSA)的选择取决于实验室经验和可及性。然而,在所有情况下,结果决定性地取决于正确的放射性示踪剂肿瘤摄取定量,不幸的是,其中仍有未揭示的线索且缺乏标准化。我们提出一种改进方法,使用组织校正摄取指数来量化发射γ射线的RSA的生物分布。我们对101例不同类型NETs患者进行了一项双中心回顾性研究。对为肿瘤以及三个参考器官(肝脏、脾脏和肺)绘制的感兴趣区域应用新的校正后获得的三个摄取指数进行了统计分析。对于校正后的病理摄取指数,结果显示估计错误发生率的误差显著降低,NETs的诊断预测能力提高,尤其是在肺参考校正指数的情况下。总之,这些结果支持在分析TcRSA生物分布时使用校正摄取指数对于提高NETs患者个性化诊断准确性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8601/8539645/2a8857a6f740/jpm-11-01042-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验