Yu Zhengqing, Lu Yujia, Cao Wandi, Aleem Muhammad Tahir, Liu Junlong, Luo Jianxun, Yan Ruofeng, Xu Lixin, Song Xiaokai, Li Xiangrui
Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
Pharmaceutics. 2021 Sep 29;13(10):1582. doi: 10.3390/pharmaceutics13101582.
The pathogen of toxoplasmosis, (), is a zoonotic protozoon that can affect the health of warm-blooded animals including humans. Up to now, an effective vaccine with completely protection is still inaccessible. In this study, the DNA vaccine encoding histone deacetylase SIR2 (pVAX1-SIR2) was constructed. To enhance the efficacy, chitosan and poly (d, l-lactic--glycolic)-acid (PLGA) were employed to design nanospheres loaded with the DNA vaccine, denoted as pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres. The pVAX1-SIR2 plasmids were transfected into HEK 293-T cells, and the expression was evaluated by a laser scanning confocal microscopy. Then, the immune protections of pVAX1-SIR2 plasmid, pVAX1-SIR2/CS nanospheres, and pVAX1-SIR2/PLGA nanospheres were evaluated in a laboratory animal model. The in vivo findings indicated that pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres could generate a mixed Th1/Th2 immune response, as indicated by the regulated production of antibodies and cytokines, the enhanced maturation and major histocompatibility complex (MHC) expression of dendritic cells (DCs), the induced splenocyte proliferation, and the increased percentages of CD4 and CD8 T lymphocytes. Furthermore, this enhanced immunity could obviously reduce the parasite burden in immunized animals through a lethal dose of RH strain challenge. All these results propose that pVAX1-SIR2 plasmids entrapped in chitosan or PLGA nanospheres could be the promising vaccines against acute infections and deserve further investigations.
弓形虫病的病原体()是一种人畜共患的原生动物,可影响包括人类在内的温血动物的健康。到目前为止,仍无法获得具有完全保护作用的有效疫苗。在本研究中,构建了编码组蛋白脱乙酰酶SIR2的DNA疫苗(pVAX1-SIR2)。为提高疗效,采用壳聚糖和聚(d,l-乳酸-乙醇酸)(PLGA)设计负载DNA疫苗的纳米球,分别记为pVAX1-SIR2/CS纳米球和pVAX1-SIR2/PLGA纳米球。将pVAX1-SIR2质粒转染到HEK 293-T细胞中,并用激光扫描共聚焦显微镜评估其表达。然后,在实验动物模型中评估pVAX1-SIR2质粒、pVAX1-SIR2/CS纳米球和pVAX1-SIR2/PLGA纳米球的免疫保护作用。体内研究结果表明,pVAX1-SIR2/CS纳米球和pVAX1-SIR2/PLGA纳米球可产生混合的Th1/Th2免疫反应,表现为抗体和细胞因子的调节性产生、树突状细胞(DCs)成熟和主要组织相容性复合体(MHC)表达增强、脾细胞增殖诱导以及CD4和CD8 T淋巴细胞百分比增加。此外,这种增强的免疫力可通过致死剂量的RH株攻击明显降低免疫动物体内的寄生虫负荷。所有这些结果表明,包裹在壳聚糖或PLGA纳米球中的pVAX1-SIR2质粒可能是预防急性感染的有前景的疫苗,值得进一步研究。